
PREVIEW EXCERPT
Practical Transformation
Using XSLT and XPath

(XSL Transformations and
the XML Path Language)

Crane Softwrights Ltd.
http://www.CraneSoftwrights.com

+//ISBN 978-1-894049::CSL::Courses::PTUX//DOCUMENT Practical Transformation Using XSLT and XPath 2011-02-11 21:00UTC//EN
Fourteenth Edition - 2011-02-11 http://www.CraneSoftwrights.com
ISBN 978-1-894049-24-5 Copyright © Crane Softwrights Ltd.

PREVIEW EXCERPT

PREVIEW EXCERPTPractical Transformation
Using XSLT and XPath

(XSL Transformations and
the XML Path Language)

Crane Softwrights Ltd.
http://www.CraneSoftwrights.com

Copyrights
- Pursuant to http://www.w3.org/Consortium/Legal/ipr-notice.html, some information included in this

publication is from copyrighted material from the World Wide Web Consortium as described in
http://www.w3.org/Consortium/Legal/copyright-documents.html: Copyright (C) 1995-2011 World
Wide Web Consortium, (Massachusetts Institute of Technology, Institut National de Recherche en Informatique et en
Automatique, Keio University). All Rights Reserved. The status and titles of the documents referenced are listed in the
body of this work where first used.

- Other original material herein is copyright (C) 1998-2011 Crane Softwrights Ltd. This is commercial material and may
not be copied or distributed by any means whatsoever without the expressed permission of Crane Softwrights Ltd.

Disclaimer
- By purchasing and/or using any product from Crane Softwrights Ltd. ("Crane"), the product user ("reader") understands

that this product may contain errors and/or other inaccuracies that may result in a failure to use the product itself or other
software claiming to utilize any proposed or finalized standards or recommendations referenced therein. Consequently, it
is provided "AS IS" and Crane disclaims any warranty, conditions, or liability obligations to the reader of any kind. The
reader understands and agrees that Crane does not make any express, implied, or statutory warranty or condition of any
kind for the product including, but not limited to, any warranty or condition with regard to satisfactory quality, merchantable
quality, merchantability or fitness for any particular purpose, or such arising by law, statute, usage of trade, course of
dealing or otherwise. In no event will Crane be liable for (a) punitive or aggravated damages; (b) any direct or indirect
damages, including any lost profits, lost savings, damaged data or other commercial or economic loss, or any other incidental
or consequential damages even if Crane or any of its representatives have been advised of the possibility of such damages
or they are foreseeable; or (c) for any claim of any kind by any other party. Reader acknowledges and agrees that they bear
the entire risk as to the quality of the product.

Page 1 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Practical Transformation Using XSLT and XPath
(Prelude) (cont.)

Preface

The main content of this book is in an unconventional style primarily in bulleted form
- derivations of the book are used for instructor-led training, requiring the succinct

presentation
- note the exercises included in instructor-led training sessions are not included in

the book
- derivations of the book can be licensed and branded for customer use in delivering

training
- the objective of this style is to convey the essence and details desired in a compact, easily

perused form, thereby reducing the search for key words and phrases in lengthy
paragraphs

- each chapter of the book corresponds to a module of the training
- each page of the book corresponds to a frame presented in the training
- a summary of subsections and their pages is at the back of the book

Much of the content is hyperlinked both internally and externally to the book in the 1-up
full-page sized electronic renditions:

- (note the Acrobat Reader "back" keystroke sequence is "Ctrl-Left")
- page references (e.g.: Chapter 2 Getting started with XSLT and XPath (page 46))
- external references (e.g.: http://www.w3.org/TR/1999/REC-xslt-19991116)
- chapter references in book summary
- section references in chapter summary
- subsection references in table of contents at the back of the book
- hyperlinks are not present in the cut, stacked, half-page, or 2-up renditions of the material

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 2 of 179

Practical Transformation Using XSLT and XPath

Practical Transformation Using XSLT and XPath

- Introduction - Transforming structured information
- Chapter 1 - The context of XSLT and XPath
- Chapter 2 - Getting started with XSLT and XPath
- Chapter 3 - XPath data model
- Chapter 4 - Processing model
- Chapter 5 - Transformation environment
- Chapter 6 - Transform and data management
- Chapter 7 - Data type expressions and functions
- Chapter 8 - Constructing the result tree
- Chapter 9 - Sorting and grouping
- Annex A - XML to HTML transformation
- Annex B - XSL formatting semantics introduction
- Annex C - Instruction, function and grammar summaries
- Annex D - Tool questions
- Conclusion - Where to go from here?

Series: Practical Transformation Using XSLT and XPath

Reference:

Pre-requisites:

- knowledge of XML syntax
- knowledge of HTML

Outcomes:

- awareness of documentation
- introduction to objectives and purpose
- exposure to example scripts
- understanding of processing model and data model
- basic script and module writing for transformation
- an overview of every element in the recommendations
- an overview of every function in the recommendations
- introduction to XSL formatting semantics

Page 3 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Transforming structured information
Introduction - Practical Transformation Using XSLT and XPath

This book is oriented to the stylesheet writer, not the processor implementer
- certain behaviors important to an implementer are not included
- objective to help a stylesheet writer understand the language facilities needed to solve

their problem
- a language reference arranged thematically to assist comprehension
- a different arrangement than the Recommendations themselves

This book covers every element, every attribute and every function of both XSLT and XPath,
both versions 1.0 and 2.0:

- content specific to XPath 1.0 is marked with a "P1" icon at the beginning of the line
- content specific to XPath 2.0 is marked with a "P2" icon at the beginning of the line
- content specific to XSLT 1.0 is marked with a "T1" icon at the beginning of the line
- content specific to XSLT 2.0 is marked with a "T2" icon at the beginning of the line

First two chapters are introductory in nature
- overview of context of XSLT and XPath amongst other members of the XML family

of Recommendations
- basic flow diagrams illustrate use of XSLT
- basic terminology and approaches are defined and explained

Third and fourth chapters cover essential bases of understanding
- data model and processing model for document representation and behavior
- important to understand the models in order to apply the language features

Fifth through ninth chapters address XSLT vocabulary
- every element, attribute and function not already covered when describing the models
- no particular order of the chapters, but example code only uses constructs already

introduced in earlier content

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 4 of 179

Practical Transformation Using XSLT and XPath

Transforming structured information (cont.)
Introduction - Practical Transformation Using XSLT and XPath

First two annexes overview HTML and XSL-FO as related to using XSLT
- considerations of using XSLT features to address basic result vocabulary requirements

Third annex includes a number of handy summaries derived from the Recommendations
- alphabetical lists of elements and functions
- print-oriented summaries of all productions

Last annex addresses questions regarding tools
- lists of questions for processor implementers when assessing tool capabilities

External ZIP file included with the purchase of the book
- all of the complete scripts utilized in the documentation as stand-alone files ready for

analysis and/or modification
- sample invocation scripts for Windows environments

Page 5 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Chapter 1 - The context of XSLT and XPath

- Introduction - Overview
- Section 1 - The XML family of Recommendations
- Section 2 - Transformation data flows

Outcomes:

- an understanding of the roles of and relationships between the members of the XML
family of Recommendations (related to XSLT and XPath)

- an awareness of available documentation and a small subset of publicly available
resources

- an understanding of the data flows possible when using XSLT in different contexts and
scenarios

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 6 of 179

Practical Transformation Using XSLT and XPath

Overview
Chapter 1 - The context of XSLT and XPath

This chapter reviews the roles of the following Recommendations in the XML family and
overviews contexts in which XSLT and XPath are used.

Extensible Markup Language (XML)
- hierarchically describes an instance of information

- using embedded markup according to rules specified in the Recommendation
- information is identified with a vocabulary of labels (a set of element types each

with a name, a structure and optionally some attributes) described by the user
- optionally specifies a mechanism for the formal definition of a vocabulary

- controls the instantiation of new information
- validates existing information is using the expected set of labels

XML Path Language (XPath)
- the document model and addressing basis for XSLT and XQuery

Extensible Stylesheet Language Family (XSLT/XSL/XSL-FO)
- XSL Transformations (XSLT)

- specifies the transformation of structured information into a hierarchy using the
same or a different document model primarily for the kinds of transformations for
use with XSL

- XSL (Formatting Semantics, a.k.a. XSL-FO)
- specifies the vocabulary and semantics of the formatting of information for

paginated presentation
- colloquially referred to at times as XSL Formatting Objects

Namespaces
- disambiguates vocabularies when mixing information from different sources
- identifies the dictionary for the labels used to mark up information

Stylesheet Association
- names resources as candidates to be utilized as a stylesheet for processing an XML

document
- does not modify the structural markup of the data
- used to specify the rendering of an instance of information

Page 7 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Extensible Markup Language (XML)
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

- http://www.w3.org/TR/REC-xml
- http://www.w3.org/TR/xml11

A Recommendation fulfilling two objectives for information representation:
- expressing information in a hierarchical arrangement using XML-defined markup
- restricting and/or validating the use of XML markup according to user-specified

constraints

Document description and data description
- the roots of XML are from the ISO specification for Standard Generalized Markup

Language (SGML) used for document description
- any hierarchical arrangement can be expressed using XML
- any non-hierarchical arrangement can be expressed hierarchically using XML
- XML now commonly used for the description of many kinds of data because of the

platform independence of the use of markup and Unicode text

XML defines basic constraints on physical and logical hierarchies of syntax
- the concept of well-formedness with a syntax for markup languages

- the vocabulary and hierarchy of constructs in an instance of information is implicit
according to the specified rules governing syntactic structures

- a language for specifying how a system can constrain the allowed logical hierarchy of
information structures

- the semantics of the user's vocabulary are not formally defined using XML constructs
- can be described in XML comments using natural language
- are defined by the applications acting on the information

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 8 of 179

Practical Transformation Using XSLT and XPath

Extensible Markup Language (XML) (cont.)
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

Physical hierarchy (the content organization):
- single collection of information ("XML instance") from multiple physical resources

("XML entities")
- an XML file is not required to be comprised of more than one physical entity
- physical modularization typically used to manage a large information set in smaller

fragments
- inappropriately used for XML fragment sharing due to parsing context

- resource is nested syntactically using XML external parsed general entity construct
- each physical resource has a well-formed logical hierarchy

- unparsed data entities in a declared notation are outside of the parsed hierarchy

a.xml
a.xml:
<!ENTITY b SYSTEM "../bdir/b.xml">

<!ENTITY c SYSTEM "c.xml">
<!ENTITY d SYSTEM "../bdir/ddir/d.xml">
<!ENTITY e SYSTEM "../bdir/e.xml">

<!NOTATION gif-file SYSTEM "gif-uri">
<!ENTITY x SYSTEM "x.gif" NDATA gif-file>

&b;

b.xml

c.xml
&c;

&d;
d.xml

e.xml

&e;

Files:
 adir/a.xml

 adir/c.xml

 adir/x.gif

 bdir/b.xml

 bdir/e.xml

 bdir/ddir/d.xml

ent="x"

x.gif

ent="x"

Page 9 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Extensible Markup Language (XML) (cont.)
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

Logical hierarchy (the information):
- single collection of information ("XML instance") comprised of multiple nested containers

(XML elements, attributes, text, etc.) where each container is labeled with a name
- each piece is expressed using an XML construct at a user-defined granularity
- the nested breakdown of the information is hierarchical

01 <?xml version="1.0"?>
02 <purchase>
03 <customer db="cust123"/>
04 <product db="prod345">
05 <amount>23.45</amount>
06 </product>
07 </purchase>

The implicit document model exists by the mere presence of logical hierarchy
- the markup of the XML constructs demarcates the locations of the information in the

hierarchy
- data model is comprised of family-tree-like relationships of parent, child, sibling, etc.

purchase

customer product

amount

(XML instance)

dbdb

(text)

A logical hierarchy need not come from XML syntax
- through "data projection" the logical tree of any information that can be organized as if

it came from XML syntax is indistinguishable from that tree that actually does come
from XML syntax

- the data model doesn't retain whatever syntax was used (XML or otherwise) to create
the logical tree

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 10 of 179

Practical Transformation Using XSLT and XPath

Extensible Markup Language (XML) (cont.)
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

XML allows user constraints on the logical hierarchy (the vocabulary)
- defines the concept of validity with a syntax for a meta-markup language
- Document Type Definition (DTD) describes the document model as a structural schema

- the vocabulary defines the logical hierarchy of the information constructs explicitly
according to user-specified constraints

- other structural and content schema languages exist for XML
- validation constraints extend to values found within text and attribute content
- different approaches to describing models provide different benefits

- constrains during generation and confirms during processing
- does not convey semantics of information being marked up

01 <?xml version="1.0"?>
02 <!DOCTYPE purchase [
03 <!ELEMENT purchase (customer, product+)>
04 <!ELEMENT customer EMPTY>
05 <!ATTLIST customer db CDATA #REQUIRED>
06 <!ELEMENT product (amount)>
07 <!ATTLIST product db CDATA #REQUIRED>
08 <!ELEMENT amount (#PCDATA)>
09 <!ATTLIST amount currency (GBP | CAD | USD) "USD">]>
10 <purchase>
11 <customer db="cust123"/>
12 <product db="prod345">
13 <amount>23.45</amount>
14 </product>
15 </purchase>

The DTD can supplement the data model with additional information:

purchase

customer product

amount

(XML instance)

currency

dbdb

(text)

- note how the shape of the tree is different in the presence of defaulted attribute
declarations

- the currency attribute is included in the tree when the DTD is present
- without the DTD the logical tree for the sample instance does not include the

currency attribute
- the markup used is identical in both the example instances

Page 11 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Extensible Markup Language (XML) (cont.)
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

The equivalent set of document constraints on the logical hierarchy expressed using W3C
Schema could be in purc.xsd:
01 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
02 <xsd:element name="purchase">
03 <xsd:complexType>
04 <xsd:sequence>
05 <xsd:element name="customer">
06 <xsd:complexType>
07 <xsd:attribute name="db" use="required"/>
08 </xsd:complexType>
09 </xsd:element>
10 <xsd:element name="product" maxOccurs="unbounded">
11 <xsd:complexType>
12 <xsd:sequence>
13 <xsd:element name="amount">
14 <xsd:complexType mixed="true">
15 <xsd:attribute name="currency" default="USD">
16 <xsd:simpleType>
17 <xsd:restriction base="xsd:string">
18 <xsd:enumeration value="GBP"/>
19 <xsd:enumeration value="CAD"/>
20 <xsd:enumeration value="USD"/>
21 </xsd:restriction>
22 </xsd:simpleType>
23 </xsd:attribute>
24 </xsd:complexType>
25 </xsd:element>
26 </xsd:sequence>
27 <xsd:attribute name="db" use="required"/>
28 </xsd:complexType>
29 </xsd:element>
30 </xsd:sequence>
31 </xsd:complexType>
32 </xsd:element>
33 </xsd:schema>

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 12 of 179

Practical Transformation Using XSLT and XPath

Extensible Markup Language (XML) (cont.)
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

The hint that a particular W3C Schema applies to a document is given via reserved attributes
- a processor is not obliged to use the hints

01 <?xml version="1.0"?>
02 <purchase xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
03 xsi:noNamespaceSchemaLocation="purc.xsd">
04 <customer db="cust123"/>
05 <product db="prod345">
06 <amount>23.45</amount>
07 </product>
08 </purchase>

Page 13 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Extensible Markup Language (XML) (cont.)
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

DTD declarations affecting the information set of the instance are significant to transform
processing that is focused on the implicit logical model of the instance:

- some attribute declarations in DTD are significant
- attribute list declarations impact transform processing by modifying the information

set of the instance
- supply of defaulted attribute values for attributes not specified in start tags

and empty tags of elements
- declaration of ID-typed attributes (for ID/IDREF processing) that confer

element identification uniqueness in an instance
- declaration of attribute types affecting the attribute value normalization during

XML processing
- attribute information does not affect the well-formed nature of an XML

instance
- all DTD content model declarations are not significant

- what the logical model could contain does not affect what the actual logical model
does contain

W3C Schema declarations inform the construction of the data model for the XML instance
from the Post Schema Validation Infoset

- only when a schema-aware processor is being used and when validation is engaged for
the source files

- schema type assignment, default attribute and element value provision, white space
normalization of element content

- the user-supplied lexical form of elements and attributes with atomic schema types
may be lost

- when not validated, input information items are treated per the XML information set
- considered as having unknown data types

- DTD default attribute value declarations override W3C Schema defaults

 No respect of element content white space is implied by the content models
- a content model is defined as either element content (a content model without #PCDATA)

or mixed content (a content model with #PCDATA)
- the term "element content white space" is defined in
http://www.w3.org/TR/xml-infoset

- sometimes colloquially termed elsewhere as "ignorable white space"
- all white space is significant to most XSLT 1 processors
- some recognition of white space can be influenced by the XSLT stylesheet

White space text node disposition is at user request
- strip all, preserve all, strip ignorable

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 14 of 179

Practical Transformation Using XSLT and XPath

Extensible Markup Language (XML) (cont.)
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

XML Recommendation describes behavior
- required of an XML processor
- how it must process an XML stream and identify constituent data
- the information it must provide to an application
- note that programming interfaces that have been standardized are separate initiatives

and are not defined by the XML Recommendation
- tree-oriented paradigm using DOM (Document Object Model)
- stream-oriented paradigm using SAX (Simple API for XML)

An XML document is only a labeled hierarchy of information
- XML only unambiguously identifies constituent parts of a stream of hierarchical

information
- no inherent meanings or semantics of any kind associated with element types

No rendition or transformation concepts or constructs
- information representation only, not information presentation or processing
- no defined controls for implying rendering semantics
- the xml:space attribute signals whether white space in content is significant to the data

definition

Page 15 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
XML information links
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

Links to useful information
- http://www.xml.com/axml/axml.html - annotated version of XML 1.0
- http://xml.coverpages.org/xml.html - Robin Cover's famous resource collection
- http://xml.coverpages.org/xll.html - Extensible Linking Language
- http://xml.silmaril.ie/ - Peter Flynn FAQ
- http://www.xmlbooks.com/ - a summary of available printed books
- http://www.CraneSoftwrights.com/links/trn-20110211.htm - training material
- http://www.CraneSoftwrights.com/resources - free resources
- http://XMLGuild.info - consulting and training expertise
- http://wiki.eclipse.org/PsychoPathXPathProcessor - standalone XPath 2.0

processor
- http://xml.coverpages.org/elementsAndAttrs.html - a summary of opinions
- http://google-styleguide.googlecode.com/svn/trunk/xmlstyle.html - a

corporate perspective

Related initiatives and specifications
- http://www.w3.org/TR/2004/REC-xml-infoset-20040204 - XML Information

Set
- http://www.w3.org/TR/xmlschema-0/ - W3C XML Schema
- http://www.relax-ng.org - ISO/IEC 19757-2 RELAX NG (based on RELAX and

TREX)
- http://www.schematron.com - ISO/IEC 19757-3 Schematron
- http://www.nvdl.org - ISO/IEC 19757-4 Namespace-based Validation Dispatching

Language (NVDL)
- http://www.w3.org/TR/DOM-Level-2/ - Document Object Model Level 2
- http://www.saxproject.org - Simple API for XML

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 16 of 179

Practical Transformation Using XSLT and XPath

XML Path Language (XPath)
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

Representing structured information
- http://www.w3.org/TR/xpath
- http://www.w3.org/TR/xpath20
- a data model for representing the information found in an XML document as an abstract

node tree
- the original markup syntax is not preserved
- the user constraints on the document model (e.g. DTD content models) are not

germane
- any logical or physical modularization (the use of entities) is not preserved

- a mechanism for addressing information found in the document node tree
- the address specifies how to traversal the data model of the instance

- a core upon which extended functionality specific to each of XPointer, XSLT and XQuery
is added

- an expression of Boolean, numeric, string and node values as different data types
- a set of functions working on the values

- annotated with W3C Schema data type information when available
- data model defined for use with XSLT and XQuery:

- http://www.w3.org/TR/xpath-datamodel/

Addressing and finding structured information
- common semantics and syntax for addressing a logical hierarchy

- document order, a.k.a. parse order, a.k.a. depth first order
- no representation of the physical hierarchy of an XML document
- a compact non-XML syntax

- for use in languages needing to address information found in an XML document
- id('start')//question[@answer='y']

- address all question elements whose answer attribute is "y" that are
descendants of the element in the current document whose unique identifier
is "start"

- the result is an address of element nodes
- for $each in id('start')//question[@answer='y']
 return if ($each/@weight) then $each/@weight * 100.
 else 100.

- for all question elements whose answer attribute is "y" that are descendants
of the element in the current document whose unique identifier is "start",
return a sequence of numbers where, if that element has a weight attribute
return the weight multiplied by 100, otherwise just return 100

- the result is a sequence of numbers suitable for processing, such as an
argument to the avg() function

Page 17 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
XML Path Language (XPath) (cont.)
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

 XPath 1.0 is an addressing language and is not a query language
- only based on XML 1.0 and Namespaces in XML 1.0

- expressed in terms of the XML Information Set
- http://www.w3.org/TR/xml-infoset

- only addresses information that needs to be found in an XML document
- other aspects of querying involve working with the information that is addressed before

returning a result to the requestor
- instructions in XSLT perform query functionality

- XPath is used only to address components of an XML instance, and in and of itself does
not provide any traditional query capabilities (though hopefully would be considered as
the addressing scheme by those defining such capabilities)

 XPath 2.0 is very much a query language
- based on W3C Schema XSD 1.0 perspective of an XML document
- supports conditional expressions, actions on the result set, etc.
- very powerful and expressive language for manipulating all types of information before

returning the result of manipulation for action

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 18 of 179

Practical Transformation Using XSLT and XPath

Styling structured information
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

Styling is transforming and formatting information
- the application of two processes to information to create a rendered result
- the ordering of information for creation isn't necessarily (or shouldn't be constrained to)

the ordering of information for presentation or other downstream processes
- it is a common (though misdirected) first step for people working with these

technologies to focus on presentation
- the ordering should be based on business rules and inherent information properties,

not on artificial presentation requirements
- downstream arrangements can be derived from constraints imposed upstream in

the process
- information created richly upstream can be manipulated into less-richly

distinguished information downstream, but not easily the other way around
- exception when the business rules are presentation or appearance oriented (e.g.

book publishing)
- the need to present information in more than one arrangement requires transformation
- the need to present information in more than one appearance requires formatting

W3C XSL Working Group
- chartered to define a style specification language that covers at least the formatting

functionality of both CSS and DSSSL
- not intended to replace CSS, but to provide functionality beyond that defined by CSS

- e.g. add element reordering and pagination semantics

Two W3C Recommendations
- designed to work together to fulfill these two objectives
- XSL Transformations (XSLT) - versions 1.0 and 2.0

- transforming information obtained from a source into a particular reorganization
of that information to be used as a result

- Extensible Stylesheet Language (XSL/XSL-FO) - versions 1.0 and 1.1
- specifying and interpreting formatting semantics for the rendering of paginated

information
- the acronym XSL-FO is unofficial but in wide use, including at the W3C, for just

the formatting objects, properties and property values
- XSL normatively includes XSLT by reference in chapter 2

- XSLT has specific features designed to be used with XSL-FO

XSLT and XSL-FO are endorsed by members of WSSSL
- an association of researchers and developers passionate about markup technologies

Page 19 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Extensible Stylesheet Language (XSL/XSL-FO)
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

- http://www.w3.org/TR/2001/REC-xsl-20011015/
- http://www.w3.org/TR/xsl11 (http://www.w3.org/TR/xsl)

Paginated flow and formatting semantics vocabulary
- capturing agreed-upon formatting semantics for rendering information in a paginated

form on different types of media
- XSLT is normatively referenced as an integral component of XSL as a language to

transform an instance of an arbitrary vocabulary into the XSL-FO XML vocabulary
- XSL-FO can be regarded simply as a "pagination markup language"
- flow semantics from the DSSSL heritage

- e.g. headers, footers, page numbers, page number citations, columns, etc.
- formatting semantics from the CSS heritage

- e.g. visual properties (font, color, etc.) and aural properties (speak, volume, etc.)

Target of transformation
- the stylesheet writer transforms a source document into a hierarchy that uses only the

formatting vocabulary in the result tree
- stylesheet is responsible for constructing the result tree that expresses the desired

rendering of the information found in the source tree
- the XML document gets transformed into its appearance

- stylesheet cannot use any user constructs as they would not be recognized by an XSL
rendering processor

- for example, the rendering engine doesn't know what an invoice number or customer
number is that may be represented in the source XML

- the rendering engine does know what a block of text is and what properties of the
block can be manipulated for appearance's sake

- the stylesheet transforms the invoice number and customer number into two blocks
of text with specified spacing, font metrics, and area geometry

Device-independent formatting constructs
- the XSL-FO vocabulary describes two media interpretations for objects and properties:

- visual media
- aural media
- a further distinction is also made at times for interactive media

- the results of applying a single stylesheet can be rendered on different types of rendering
devices, e.g.: print, display, audio, etc.

- may still be appropriate to have separate stylesheets for dissimilar media
- device independence allows the information to be rendered on different media, but

a given rendering may not be conducive to consumption

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 20 of 179

Practical Transformation Using XSLT and XPath

Extensible Stylesheet Language Transformations
(XSLT)
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

Addressing, querying and publishing structured information
- http://www.w3.org/TR/xslt

- addressing structured information
- http://www.w3.org/TR/xslt20

- querying structured information
- a framework for complex and intelligent querying of structured content

- with a powerful syntax for modular and extensible stylesheet writing
- works on XML documents
- works on any source of information projected as if it were an XML document

- such projection is defined by the vendor, not by the specification
- the specification sees all information as if it had been in an XML document
- e.g. database tables, rows and columns
- e.g. unstructured documents
- e.g. proprietary binary formats
- any information can be fit (or shoehorned) into an XML document by using data

projection
- numerous features for publishing information for human consumption

- e.g. formatting numbers, dates and times
- e.g. polymorphism of stylesheet constructs for specialization of behaviors
- e.g. elaborate grouping criteria
- e.g. multiple result trees

Shares the same data model as XQuery
- built on XPath 2.0 with additional functions not available in XQuery expressions

Shares the same basic processing model as XQuery
- some XSLT and XQuery implementations share the same core engine

- e.g. Saxon 9 http://saxon.sf.net treats XSLT and XQuery merely as different
syntax skins over the same implementation engine

Shares the same serialization specification as XQuery
- used to frame query results as structured or non-structured output of transformation

Syntactically, XSLT is an XML vocabulary
- an XSLT stylesheet is a well-formed XML document
- all use of XPath 2.0 is in attributes of XSLT and other XML elements

Transformation specifications are termed "XSLT stylesheets"
- describing how new results are constructed from old inputs
- termed generically as "a transform" in this training material

Page 21 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Extensible Stylesheet Language Transformations
(XSLT) (cont.)
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

Transformation using construction by example
- a vocabulary for specifying templates of the result that are filled-in with information

from the source
- the stylesheet includes examples of each of the components of the result
- the stylesheet writer declares how the XSLT processor builds the result from the

supplied examples
- the primary memory management and manipulation (node traversal and node creation)

is handled by the XSLT processor using declarative constructs, in contrast to a
transformation programming language or interface (e.g. the DOM - Document Object
Model) where the programmer is responsible for handling low-level manipulation using
imperative constructs

- includes constructs to reposition over structures and information found in the source
- the information being transformed can be traversed in different ways any number of

times required to construct the desired result
- straightforward problems are solved in straightforward ways without needing to know

programming
- useful, commonly-required facilities are implemented by the processor and can be

triggered by the stylesheet
- the language is Turing complete, thus arbitrarily complex algorithms can be

implemented (though not necessarily in a pretty fashion)
- includes constructs to manage stylesheets by sharing components in different fragments
- XSLT 2.0 has many more programming features and function calls than XSLT 1.0

Many language features for modularization and leveraging stylesheets
- supports forms of polymorphism for stylesheet constructs
- supports extensive re-use of stylesheet fragments for generalized transformations or

specific transformations
- overriding template rules

- allows one to create "onion skins" of modifications to stylesheet libraries
- testing the presence of extensions before using them

- allows one to run one stylesheet with multiple XSLT processors

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 22 of 179

Practical Transformation Using XSLT and XPath

Extensible Stylesheet Language Transformations
(XSLT) (cont.)
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

Illustration of templates triggered in source-tree order constructing a result:

A

B

G I

ED

C

F

H K

M

L

J

N

P Q

W YX

ZT U

V

SR

O

early result treesource tree XSLT
stylesheet

Source
Node type:

Result
Template

1

2

2 3

33 4

3 6

5

3 6

3 23

3 2

3

6:

J5:

F4:

3:

2:

A1:

A

B ED

C

F

A

B

G I

ED

C

F

H K

M

L

J

N

P Q

SR

O

final result tree

Legend:
 - source tree is labeled by type
 - result tree (in three
 snapshots) is labeled by
 result parse order

Of note:
- the source tree contains nodes of six different types, labeled "1" through "6"

- a number of nodes are found multiple times in the source tree
- the stylesheet contains fragmented examples of the result tree

- each example template is associated with a node in the source tree
- the nodes in the source tree trigger the building of the result from the example templates

- some examples are used multiple times in the result
- in this example, the source tree is visited strictly in parse order to generate the result

tree
- the stylesheet can visit the source tree in whatever order is required to trigger the

assembly of the result tree in result parse order
- result parse order is indicated by the letters "A" through "Z"

Page 23 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
XSLT properties
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

Expression syntax is iconic
- using XML markup allows one to manifest the output

- XML is a first-class data type and output expression syntax
- the syntax itself is abstracted into a tree of nodes
- syntax not related to the information in the document is not preserved

- using other languages one must describe the creation of the output
- XML is created using function calls, not built into the language syntax

Abstract structure result of nodes, not markup
- external result markup (if needed) is determined from the result node tree
- the result of transformation is a tree of nodes built from instantiated templates as an

internal hierarchy that may be serialized externally as markup
- the processor may, but is not obliged to, externalize the result tree in XML or some other

type of syntax if requested by the transform writer
- the transform writer has little or no control over the syntactic constructs chosen

by the processor for serialization
- the transform writer can request certain behaviors that the processor can ignore
- final result is guaranteed to comply with lexical requirements of the output method

- when not coerced by certain transform controls
- source tree markup syntax preservation cannot be implemented with a transform

- because the source tree syntax is translated into source tree nodes and
forgotten

- the processing model allows the processor to immediately serialize the result tree as
markup while it is being built by the transform, and not maintain the complete result in
memory

- the transform may request the processor emit the result tree using built-in available
lexical conventions (XML, HTML or text-only conventions)

- multiple result trees may be constructed and serialized

Not intended for syntactic general purpose XML transformations
- designed for downstream-processing and subsequent transformations or interpretation

- does not include certain features appropriate for syntax-level general purpose
transformations

- unsuitable for original markup syntax preservation requirements
- XSLT 2.0 has more syntax serialization features than XSLT 1.0
- includes facilities for working with the XSL vocabulary easily

- still powerful enough for most downstream-processing transformation needs
- where the syntax choices when using XML are not important
- absolutely general purpose when the output is going to be input to an XML

processor

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 24 of 179

Practical Transformation Using XSLT and XPath

XSLT properties (cont.)
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

Document model and vocabulary independent
- a transform is independent of any Document Type Definition (DTD) or schema that

may have been used to constrain the instance being processed
- a processor can process well-formed XML documents without a model

- behavior is specified against the presence of markup in an instance as the implicit
model, not against the allowed markup prescribed by any explicit model

- one transform can process instances of different document models
- multiple instances of different models can be used in a single transformation
- different transforms can process a given single instance to produce different results

Source files and transforms
- one or more source files and one or more transform fragments

- starting with a single source file and the top-most transform fragment
- all stylesheets and source files must be well-formed XML
- stylesheets must be XML, source files may be simple text or well-formed XML

- zero or more source files and one or more stylesheet fragments
- starting with the top-most stylesheet fragment and optionally a source file

- the processor is allowed to deliver well-formed XML from any data source
- Recommendation does not support SGML instances as input

- see http://www.w3.org/TR/NOTE-sgml-xml-971215 for a comparison of SGML
and XML

- see http://tidy.sourceforge.net/ for interpretation and conversion of
instances of the HTML vocabulary into XHTML markup conventions

- see http://www.ccil.org/~cowan/XML/tagsoup for interpretation and
conversion of streams of arbitrary HTML constructs

- see http://www.jclark.com/sp/sx.htm in the SP package
http://www.jclark.com/sp for conversion of SGML instances to XML instances
without document type declarations

- see http://www.CraneSoftwrights.com/resources/n2x for conversion of
SGML instances to XML instances with document type declarations

Validation unnecessary (but convenient)
- an XSLT processor need not implement a validating XML processor
- must implement at least a non-validating XML processor to ensure well-formedness
- validation is convenient when debugging transform development

- if the source document does not validate to the model expected by the transform
writer, then a correctly functioning transform may exhibit incorrect behavior

- time spent debugging the working transform is wasted if the source is incorrect
- can selectively validate input documents and result documents using W3C Schema

Page 25 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
XSLT properties (cont.)
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

Multiple source files possible
- one mandatory primary source file
- one optional primary source file

- in the absence of a source file a named template must be specified as where to start
processing

- transform may access arbitrary other source files
- including itself as a source file
- names of resources hardwired within the transform
- names of resources found within source files

- multiple accesses to the same resource refer to a single abstract representation
- one is not built for each access to a named resource

- simple text files can be input into the process

Extensible language design supplements processing
- a processor may support extensions specified in the transform but is not obliged to do

so
- extended functions
- extended serialization conventions
- extended sorting schemes
- extended instructions

- access to non-standardized extensions is specified in standardized ways
- transform user-defined functions can be declared and used

Single-pass construction of the result node-tree
- unlike the Document Object Model (DOM)

- reified node-tree manipulation (read/write) interface with syntax serialization
- unlike the Simple API for XML (SAX)

- single-pass input event-handling interface with single-pass result markup syntax
- transform must construct the result tree in result-tree parse order in one pass

- no revisiting of the result tree after construction
- no revisiting an element's start tag after beginning that element's content
- recall the result tree building shown on page 23

- the source trees can be traversed in any order (not necessarily in parse order)
- information in the source trees can be ignored or selectively processed

- the result tree is emitted as if constructed chronologically in parse order
- this is not an implementation constraint, but an implementation must act as if the

tree were created in parse order
- an important distinction for parallelism where partial trees may be constructed

in parallel

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 26 of 179

Practical Transformation Using XSLT and XPath

Historical development of the XSL and XQuery
Recommendations
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

Recommendation release history:
- first concept description floated in August 1997 with no official status within the World

Wide Web Consortium (W3C)
- http://www.w3.org/TR/NOTE-XSL.html

- the XSL Working Group officially chartered in early 1998
- http://www.w3.org/Style/XSL/

- agreed upon requirements for XSL by the Working Group:
- http://www.w3.org/TR/WD-XSLReq

- the XSL 1.0 Recommendation (XSL-FO) published October 15, 2001
- http://www.w3.org/TR/2001/REC-xsl-20011015/

- the XSL 1.1 Recommendation (XSL-FO) published December 5, 2006
- http://www.w3.org/TR/2006/REC-xsl11-20061205/

- the XSLT/XPath 1.0 Recommendations published November 16, 1999
- http://www.w3.org/TR/1999/REC-xslt-19991116

- http://www.w3.org/1999/11/REC-xslt-19991116-errata - errata
- http://www.w3.org/TR/1999/REC-xpath-19991116

- http://www.w3.org/1999/11/REC-xpath-19991116-errata - errata
- XSLT 1.1 (work abandoned)

- http://www.w3.org/TR/2000/WD-xslt11req-20000825 - requirements
- http://www.w3.org/TR/2001/WD-xslt11-20010824
- no incompatible changes to XSLT 1.0 in XSLT 1.1, only additional functionality
- too many interactions with plans for XSLT 2.0, so functionality to be folded into

XSLT 2.0 release
- XSLT 2.0/XPath 2.0/XQuery 1.0 originally published January 23, 2007, followed by

editorial editions:
- http://www.w3.org/TR/2007/REC-xslt20-20070123/
- http://www.w3.org/TR/2010/REC-xpath20-20101214/
- http://www.w3.org/TR/2010/REC-xpath-datamodel-20101214/
- http://www.w3.org/TR/2010/REC-xpath-functions-20101214/
- http://www.w3.org/TR/2010/REC-xslt-xquery-serialization-20101214/
- http://www.w3.org/TR/2010/REC-xquery-20101214/
- http://www.w3.org/TR/2010/REC-xquery-semantics-20101214/
- http://www.w3.org/TR/2010/REC-xqueryx-20101214/

Page 27 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
XSL information links
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

Links to useful information
- http://xml.coverpages.org/xsl.html - Robin Cover
- http://www.mulberrytech.com/xsl/xsl-list/ - mail list
- http://www.dpawson.co.uk - an XSL/XSLT FAQ
- http://www.zvon.org/HTMLonly/XSLTutorial/Books/Book1/index.html -

numerous example XSLT scripts and fragments
- http://www.openmath.org/cocoon/openmath/ - OpenMath project work by David

Carlisle
- http://www.CraneSoftwrights.com/links/trn-20110211.htm - comprehensive

XSLT/XPath and XSL-FO training material
- http://XMLGuild.info - consulting and training expertise
- http://www.CraneSoftwrights.com/resources- free XSLT and XSL-FO resources
- http://incrementaldevelopment.com/xsltrick/ - "Stupid XSLT Tricks"
- http://xml.coverpages.org/xslSoftware.html - list of tools
- http://www.exslt.org/ - community effort for XSLT extensions
- http://exslfo.sf.net - community effort for XSL-FO extensions
- http://foa.sourceforge.net/ - open source FO GUI authoring tool
- http://www.xslfast.com/ - commercial FO GUI authoring tool
- http://www.inventivedesigners.com/ - commercial FO GUI authoring tool
- http://www.abisource.com/ - word processing with "Save As..." for XSL-FO
- http://www.AntennaHouse.com/XSLsample/XSLsample.htm - paginating XHTML
- ISBN 1-56609-159-4 - "The Non-Designer's Design Book", Robin Williams, Peachpit

Press, Inc., 1994
- ISBN 0-8230-2121-1/0-8230-2122-X - "Graphic design for the electronic age; The

manual for traditional and desktop publishing", Jan V. White, Xerox Press, 1988 (out
of print but worthwhile to search for as a used book)

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 28 of 179

Practical Transformation Using XSLT and XPath

Namespaces
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

- http://www.w3.org/TR/REC-xml-names

An important role in information representation:
- vocabulary distinction in a single XML document

- mixing information from different document models
- labels in the hierarchy are globally unique and identifiable
- a metaphor is that each namespace is a dictionary with words

- each dictionary may have a different definition for the same word as found
in other dictionaries

- the namespace identifies which dictionary of words is in use
- possible use for resource discovery being considered

- generalized associated information regarding information in an instance
- possible access to document model, transforms, validation algorithms, access

libraries, etc.

Vocabulary distinction
- specifies a simple method for qualifying element and attribute names used in XML

documents
- allows the same element type name to be used from different vocabularies in a given

document
- consider two vocabularies each defining the element type named "<set>", each

with very different semantics
- following the metaphor, the one word has two different definitions and

interpretations, one from each dictionary
- in SVG (Scalable Vector Graphics) the element <set> refers to setting a

value within the scope of contained markup
- in MathML (Mathematical Markup Language) <set> refers to a collection

of constructs treated as a set
- any document needing to mix elements from the two vocabularies may need to

use the same name
- without namespaces an application cannot distinguish which construct is

being used
- a namespace prefix differentiates the element type name suffix in an instance

- <svg:set>
- <math:set>

- composite name lexically parses as an XML name
- the use of the colon is defined by the namespaces recommendation

- also used to uniquely distinguish identification labels in some Recommendations
- e.g.: customized sort scheme label

Page 29 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Namespaces (cont.)
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

URI value association
- associates element type name prefixes with Universal Resource Identifier (URI)

references whether or not any kind of resource exists at the URI
- following the metaphor, the URI uniquely identifies the dictionary of the words

- supplemental documentation defines the meaning of each of the words
- URI domain ownership under auspices of established organization
- URI conflicts avoided if rules followed

- examples:
- xmlns:svg="http://www.w3.org/2000/svg-20000629"
- xmlns:math="http://www.w3.org/1998/Math/MathML"
- xmlns:ex1="urn:isbn:978-1-894049:example"
- xmlns:ex2="urn:X-Crane:namespaces:documents:example2"
- xmlns:ex3="ftp://ftp.CraneSoftwrights.com/ns/example3"
- xmlns:ex4="mailto:gkholman@CraneSoftwrights.com"

- explicitly does not require to de-reference any kind of information from the URI
- note that the Resource Description Framework (RDF) recommendation does have

a convention of looking to the URI for information, though this is outside the scope
of the Namespaces recommendation

- according to the recommendation, the URI is only used to disambiguate otherwise
identical unqualified members of different vocabularies

The choice of the prefix is arbitrary and can be any lexically valid name
- the prefix is never a mandatory aspect of any Recommendation
- the prefix is discarded by the XML namespace-aware processor along the lines of:

- <{http://www.w3.org/2000/svg-20000629}set>
- <{http://www.w3.org/1998/Math/MathML}set>
- the above use of "{" and "}" are a common convention but not standard
- note how the "/" characters of the URI would be unacceptable given the lexical

rules of names, thus, the URI could never be used directly in the XML tags
- the prefix is a syntactic shortcut preventing the need to specify long distinguishing strings

Different views of the name of <svg:set>:
- "set" is the local name
- "svg:set" is the qualified name

- a name subject to namespace interpretation (prefixed or un-prefixed)
- the lexical space for the W3C Schema QName data type

- "{http://www.w3.org/2000/svg-20000629}set" is the expanded name
- combination of namespace URI (also called "namespace name") and the local part
- the value space for the W3C Schema QName data type
- the use of "{" and "}" is not standard, but is used by some tools such as Saxon

- "http://www.w3.org/2000/svg-20000629#set" is a URI value convention

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 30 of 179

Practical Transformation Using XSLT and XPath

Namespaces (cont.)
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

An example of using namespaces in a Universal Business Language (UBL) invoice:
- for space reasons the lengthy namespace URI strings have been abbreviated
- note that namespaces are important because there are two elements with the same local

name "Location", one in each of two different namespaces
01 <Invoice xmlns="urn:oasis:...:xsd:Invoice-2"
02 xmlns:cbc="urn:oasis:...:xsd:CommonBasicComponents-2"
03 xmlns:cac="urn:oasis:...:xsd:CommonAggregateComponents-2"
04 xmlns:ext="urn:oasis:...:xsd:CommonExtensionComponents-2"
05 xmlns:demo="urn:x-Demo:Demo">
06 <ext:UBLExtensions>
07 <ext:UBLExtension>
08 <cbc:ID>Demo1</cbc:ID>
09 <cbc:Name>Demonstration</cbc:Name>
10 <ext:ExtensionAgencyID>CSL</ext:ExtensionAgencyID>
11 <ext:ExtensionAgencyName>Crane Softwrights Ltd.
12 </ext:ExtensionAgencyName>
13 <ext:ExtensionVersionID>0.1</ext:ExtensionVersionID>
14 <ext:ExtensionAgencyURI>http://www.CraneSoftwrights.com/
15 links/res-dev.htm</ext:ExtensionAgencyURI>
16 <ext:ExtensionURI>urn:x-Demo:Demo:0.1</ext:ExtensionURI>
17 <ext:ExtensionReasonCode listURI="urn:x-Demo:Demo:ReasonCodes">1
18 </ext:ExtensionReasonCode>
19 <ext:ExtensionReason>Illustration</ext:ExtensionReason>
20 <ext:ExtensionContent>
21 <demo:Demo>
22 <demo:Thing>This is a test</demo:Thing>
23 <cbc:ID>DemoTest</cbc:ID>
24 <demo:Total currencyID="GBP">100.00</demo:Total>
25 </demo:Demo>
26 </ext:ExtensionContent>
27 </ext:UBLExtension>
28 </ext:UBLExtensions>
29

30 <cbc:ID>A00095678</cbc:ID>
31 <cbc:IssueDate>2005-06-21</cbc:IssueDate>
32 <cbc:Note>sample</cbc:Note>
33 <cac:AccountingSupplierParty>
34 <cac:Party>
35 <cac:PartyName>
36 ...

Page 31 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Namespaces (cont.)
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

Namespaces in XSLT and XSL-FO
- both files are in well-formed XML syntax

- require all namespaces used to be declared; there are no defaults
- recommendations utilize namespaces to distinguish the desired result tree vocabularies

from the transformation instruction vocabularies
- http://www.w3.org/1999/XSL/Transform

- XSL transformation instruction vocabulary
- the use of any archaic URI values for the vocabulary will not be recognized by an

XSLT processor
- http://www.w3.org/1999/XSL/Format

- XSL formatting result vocabulary
- the year represents when the W3C allocated the URI to the working group, not the

version of XSL the URI represents

Extension identification
- processors are allowed to recognize other namespaces in order to implement extensions

not defined by the Recommendations:
- functions
- XSLT instructions
- XSLT system properties
- collations
- serialization methods

- e.g.: http://www.jclark.com/xt
- extensions available when using XT

- e.g.: http://saxon.sf.net/
- extensions available when using Saxon

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 32 of 179

Practical Transformation Using XSLT and XPath

Namespaces (cont.)
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

Naming of top-level constructs in XSLT
- libraries of transform fragments can isolate their constructs by using unique namespace

URI strings
- building upon an existing library is done without risking the integrity of the existing

stylesheets when one is disciplined about the naming of constructs
- in the following example, two different variables are declared because of the unique

namespace URI strings (the prefixes are immaterial)
- the first is in namespace "urn:X-a" and the second is in namespace "urn:X-b"

- 01 <xsl:variable name="a:thing" select="'abc'" xmlns:a="urn:X-a"/>
02 <xsl:variable name="a:thing" select="'def'" xmlns:a="urn:X-b"/>

- stylesheet-defined function names must be namespace qualified
- the default namespace is never used for naming top-level constructs

Page 33 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Stylesheet association
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

- http://www.w3.org/TR/xml-stylesheet

Relating documents to stylesheets
- associating one or more stylesheets with a given XML document
- same pseudo-attributes and semantics as in the HTML 4.0 recommendation elements:

- <LINK REL="stylesheet">
- <LINK REL="alternate stylesheet">

Ancillary markup
- not part of the structural markup of an instance, thus it is marked up using a processing

instruction rather than first-class (declared or declarable in a document model) markup

Typical examples of use:
01 <?xml-stylesheet type="text/xsl" href="../xs/xslstyle-docbook.xsl"?>

01 <?xml-stylesheet type="text/css" href="normal.css"?>

Less typical examples provided for by the design:
01 <?xml-stylesheet alternate="yes" title="small"
02 href="small.xsl" type="application/xslt+xml"?>

- provide the processor with an alternate stylesheet if some external stimulus triggers it
by name

01 <?xml-stylesheet href="#style1" type="application/xslt+xml"?>

- instruct the processor to find the stylesheet embedded in the source document at the
named location

Important note about type= values for associating XSLT:
- type="text/xsl" is not a registered MIME type

- the only type recognized by IE for the use of XSLT
- type="application/xslt+xml" has been proposed in IETF RFC 3023
- type="text/xml" is reported to be supported by some processors

See XSLStyle™ (page 160) for an embedded XSLT documentation methodology

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 34 of 179

Practical Transformation Using XSLT and XPath

Transformation from XML to XML
Chapter 1 - The context of XSLT and XPath
Section 2 - Transformation data flows

The basic behavior is to transform a hierarchical input into a hierarchical result tree:
- that result tree may be emitted as an XML instance

XML

Transform
Process

XML

XSLT/
XQ

source data
projection

result
documents

transform

XML
Transform

Process
XML

source
nodes

XSLT/
XQ

Transform
Process

XML
transform

Result

Result

Result

data sources

Flat
files

Data
bases

Feeds

XML

source
document

Of note:
- a given transform can be applied to more than one XML structure
- a given XML structure can have more than one transform applied
- a given XML structure can be derived from an XML file or projected from some other

data source identified by the transform
- the result of construction is the abstract result tree within the transform process serialized

to the emitted XML under the control of the process
- the dotted triangle in the process represents the abstract node tree of the result

Diagram legend
- processes represented by rectangles
- hierarchical structures represented by triangles

- a tree structure with the single root at the left point and the tree expanding and
getting larger towards the leaves at the right edge

- XML files are drawn with a solid line, node structures are drawn with a dotted line
- unstructured files represented by parallelograms

Page 35 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Transformation from XML to non-XML
Chapter 1 - The context of XSLT and XPath
Section 2 - Transformation data flows

A processor may choose to recognize the transform's request to serialize a non-XML
representation of the result tree:

- triggered through using an output serialization method supported by the processor

Shared serialization specification between XSLT 2.0 and XQuery 1.0
- http://www.w3.org/TR/xslt-xquery-serialization/

At least two non-XML tree serialization methods common to all specifications:

XML
Transform

Process
HTML

XSLT/
XQ

source
nodes

result
document

transform

Result XML
Transform

Process

XSLT/
XQ

source
nodes

result
document

transform

Result Text

- html
- HTML markup and structural conventions

- some older HTML user agents (e.g. browsers) will not correctly recognize
elements in the HTML vocabulary when the instance is marked up using
XML conventions (e.g.
 must be
), thus necessitating the
interpretation of HTML semantics when the result tree is emitted

- using this will not validate the result tree output as being HTML
- if the result is declared HTML but the desired output isn't HTML, the

HTML semantics could interfere with the markup generated
- HTML built-in character entities (e.g.: accented letters, non-breaking space, etc.)

- text
- simple text content with all element start and end tags removed and ignored
- none of the characters are escaped on output
- example of use: creating operating system batch and script files from structured

XML documents

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 36 of 179

Practical Transformation Using XSLT and XPath

Transformation from XML to non-XML (cont.)
Chapter 1 - The context of XSLT and XPath
Section 2 - Transformation data flows

 No standardized support for XHTML lexical conventions
- a processor could offer a custom extension, but many (possibly all?) do not

 Standardized support for XHTML lexical conventions
- xhtml

- browser compatibility guidelines for empty tags for elements defined to be empty
- no markup minimization for empty elements for elements not defined to be empty

XML
Transform

Process
XHTML

XSLT/
XQ

source
nodes

result
document

transform

Result

Page 37 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Transformation from XML to non-XML (cont.)
Chapter 1 - The context of XSLT and XPath
Section 2 - Transformation data flows

 Only standardized support for a single result tree
- most XSLT processors offer a custom extension, but there is no obligation to do so and

it is not standardized

 Standardized support for multiple result trees
- each result tree can have the same or different serialization
- multiple result trees are not accessible to a single XSL-FO process

XSLT
Process

XML

XML

XSLT

source
nodes

result
documents

stylesheet

Result

Result

Text

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 38 of 179

Practical Transformation Using XSLT and XPath

Transforming and rendering XML information
using XSLT and XSL-FO
Chapter 1 - The context of XSLT and XPath
Section 2 - Transformation data flows

When the XSLT result tree is specified to utilize the XSL-FO formatting vocabulary:
- the normative behavior is to interpret the result tree according to the formatting semantics

defined in XSL for the XSL-FO formatting vocabulary
- an inboard XSLT processor can effect the transformation to an XSL-FO result tree
- the XSL-FO result tree need not be serialized in XML markup to be conforming to the

recommendation (though useful for diagnostics to evaluate results of transformation)

XSL Processor

XML PrintXSLT
Process

Print
Process

XSLT/
XSL-FO

source
document

result
tree

transformation
script

Display
Process

Display

XSL-FO

XSL Formatting and
Flow Object Semantics

Interpretation
in Each Domain

optional
serialized

XML

Aural
Process

Aural

XSL-FO

Of note:
- the stylesheet contains only the XSLT transformation vocabulary, the XSL formatting

vocabulary, and extension transformation or foreign object vocabularies
- the source XML contains the user's vocabularies
- the result of transformation contains exclusively the XSL formatting vocabulary and

any extension formatting vocabularies
- does not contain any constructs of the source XML or XSLT vocabularies

- the rendering processes implement for each medium the common formatting semantics
described by the XSL recommendation

- for example, space specified before blocks of text can be rendered visually as a
vertical gap between left-to-right line-oriented paragraphs or aurally as timed
silence before vocalized content

Page 39 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
XML to binary or other formats
Chapter 1 - The context of XSLT and XPath
Section 2 - Transformation data flows

Some non-XML requirements are neither text nor HTML
- need to produce composition codes for legacy system
- binary files with complex encoding
- custom files with complex or repetitive sequences

One can capture the semantics of the required output format in a custom XML vocabulary
- e.g.: "CVML" for "Custom Vocabulary Markup Language"
- designed specifically to represent meaningful concepts for output

XML
XSLT

Process
CVML

CVML
Interpreter
(SAX/DOM)

XSLT/
CVML

source
document

result
document

transformation
script

Non-
XML

result file

Result

Custom
Vocabulary
Semantics

Interpretation

A single translation program (drawn as "CVML Interpreter"):
- can interpret all XML instances using the custom vocabulary markup language (e.g.

CVML) to produce the output according to the programmed semantics
- is independent of the XSLT stylesheets used to produce the instances of the custom

vocabulary
- allows any number of stylesheets to be written without impacting the translation to the

final output
- divorces the need to know syntactic output details

- output is described abstractly by semantics of the vocabulary
- output is serialized following specific syntactic requirements

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 40 of 179

Practical Transformation Using XSLT and XPath

XML to binary or other formats (cont.)
Chapter 1 - The context of XSLT and XPath
Section 2 - Transformation data flows

The XSLT recommendation is extensible providing for vendor-specific or application-specific
output methods:

- xmlns:prefix="processor-recognized-URI"
- prefix:serialization-method-name

- vendors can choose to support additional built-in tree serialization methods
- output can be textual, binary, dynamic process (e.g.: database load), auditory, or

any desired activity or result

The ability to specify vendor-specific or implementation-specific output methods allows
custom semantics to be interpreted within the modified XSLT processor, thus not requiring
the intermediate file:

XML
XSLT

Process

CVML
Interpreter
(SAX/DOM)

source
document

result
tree

transformation
script

Non-
XML

result fileCustomized XSLT Processor

CVML

Custom
Vocabulary
Semantics

InterpretationXSLT/
CVML

Page 41 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
XSLT as an application front-end
Chapter 1 - The context of XSLT and XPath
Section 2 - Transformation data flows

A legacy application can utilize an XSLT processor to accommodate arbitrary XML
vocabularies

- making an application XML-aware involves using an XML processor to accommodate
a vocabulary expressing application data semantics

- event driven using SAX processing and programming
- tree driven using DOM processing and programming
- without XSLT, each different XML vocabulary would need to be accommodated

by different application integration logic
- an application can engage an XSLT processor and directly access the result tree

- single process programmed to interpret a single markup language
- each different XML vocabulary is accommodated by only writing a different XSLT

stylesheet
- each stylesheet produces the same application-oriented markup language

- no reification of the result tree is required

XML

source
documents
User-XML-1

transformation
script

User-XSLT-1XSLT/
CVML

Application

Application
Semantics

Non-
XML

XML-Aware Application

Application
SemanticsCVML

CVML
Interpreter
(SAX/DOM)

XML/XSLT-Enabled Application

Application
Semantics

CVML
Interpreter
(SAX/DOM)

XSLT
Process

result
tree

CVML

XML

source
documents
User-XML-2 transformation

script
User-XSLT-2

XSLT/
CVML

XMLU-1
XML

XMLU-2
XML

Non-
XML
Non-
XML CVMLCVML

XML

source
documents

CVML

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 42 of 179

Practical Transformation Using XSLT and XPath

Three-tiered architectures
Chapter 1 - The context of XSLT and XPath
Section 2 - Transformation data flows

To support a legacy of user agents that do not support XML:
- web servers can detect the level of support of user agents
- where XML and XSLT or XQuery are not supported in a user agent:

- the host can take on the burden of transformation
- where XML and XSLT or XQuery are supported in a user agent

- the burden of transformation can be distributed to the agent
- the XML information can be massaged before being sent to the agent

- allows information to be maintained in XML yet still be available to all users

Web Host

XML Browser

XML Browser

XML

Transform
Process

XSLT/
XQ

source
document

transform

XSLT/
XQ

Transform
Process

transform

Display

HTML Browser

Transform
Process

Display

XSLT/
XQ

transform

Transform
Process

Display

HTML

Transform

XML

XML

Transform

Transform
Process

XML Browser

Transform
Process

DisplayXML

XML Browser

Transform
Process

Display

XSLT
/XQ

XML

Page 43 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Three-tiered architectures (cont.)
Chapter 1 - The context of XSLT and XPath
Section 2 - Transformation data flows

Always performing server-side transformation:
- good business sense in some cases

- even if technically it is possible to send semantically-rich information
- never send unprocessed semantically-rich XML

- or only send it to those who are entitled to it
- for security reasons
- for payment reasons

- translation into a presentation-orientation
- using a markup language inherently supported by the user agent (e.g. HTML)
- using a custom, semantic-less markup language with an associated transformation

- "semantic firewall"
- to protect the investment in rich markup from being seen where not desired
- no consensus in the community that semantic firewalls are a "good thing"

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 44 of 179

Practical Transformation Using XSLT and XPath

XSLT and XQuery on the wire
Chapter 1 - The context of XSLT and XPath
Section 2 - Transformation data flows

XSLT and XQuery have a role in a large or small network cloud:
- simple transformation services can be made available to users on the network,

unburdening the user's own infrastructure

Publish/
SubscribeXML

XML

XMLXML

XML

XML

Transform
Process

Transform
Process

Transformation Aggregation

Transform
Process

Publish/Subscribe
- a network service can accept subscription requests from across the network
- the XML document from the publisher is routed to all subscription destinations
- a subscriber can request a transformation process so as to receive the published

information in the desired structure

Aggregation
- a network service can accept XML documents from across the network
- a user of the service can receive the aggregate of all of the information
- the information can be transformed into a homogenous collection for ease of processing

and analysis

Transformation
- a user of the network can utilize wire-speed transformation of outgoing and incoming

documents to a peer

Page 45 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Chapter 2 - Getting started with XSLT and XPath

- Introduction - Getting started
- Section 1 - Transform examples
- Section 2 - Syntax basics
- Section 3 - Approaches to transform design
- Section 4 - More transform examples

Outcomes:

- analyze the different components of a few example transforms
- introduce the concepts of instructions and templates

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 46 of 179

Practical Transformation Using XSLT and XPath

Getting started
Chapter 2 - Getting started with XSLT and XPath

A few simple transformations:
- using Saxon

- Saxon 6.5.5 (and later) support XSLT 1.0
- Saxon 9 (and later) support XSLT 2.0 and XQuery 1.0

- using Internet Explorer 5 or greater
- for IE5, the updated MSXML processor (at least the third Web Release of March

2000) is needed to support the W3C XSLT 1.0 Recommendation
- the IE6 production release supports the W3C XSLT 1.0 Recommendation

Dissect example transforms
- identify transform components as an introduction to basic concepts covered in more

detail in the later chapters

This material has a number of handy references harvested from the specification documents:
- XSLT 1.0 element summary (page 115)
- XPath 1.0 and XSLT 1.0 function summary (page 120)
- XPath 1.0 grammar productions (page 123)
- XSLT 1.0 grammar productions (page 126)
- XSLT 2.0 element summary (page 127)
- XPath 2.0 and XSLT 2.0 function summary (page 137)
- XPath 2.0 grammar productions (page 149)
- XSLT 2.0 grammar productions (page 154)

Page 47 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Some simple examples
Chapter 2 - Getting started with XSLT and XPath
Section 1 - Transform examples

Consider the following XML file hello.xml obtained from the XML 1.0 Recommendation
and modified to declare an associated stylesheet:
01 <?xml version="1.0"?>
02 <?xml-stylesheet type="text/xsl" href="hello.xsl"?>
03 <greeting>Hello world.</greeting>

This is the complete logical tree of the entire instance:

Root

Processing Instruction
name="xml-stylesheet"

value="type="text/xsl" href="hello.xsl" "

Element
local-name="greeting"
namespace=""

Text
"Hello world. "

Namespace
name="xml"

value="http://www.w3.org/XML/1998/namespace"

Note that there is no node in the tree created by the XML Declaration
- the XML Declaration is a syntactic signal in an XML instance regarding the encoding

and version of XML being used
- it is consumed by the XML processor as part of the parsing process and is not delivered

to an application

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 48 of 179

Practical Transformation Using XSLT and XPath

Some simple examples (cont.)
Chapter 2 - Getting started with XSLT and XPath
Section 1 - Transform examples

Consider the following XSLT file hellohtm.xsl to produce HTML, noting how much it
looks like an HTML document yet contains XSLT instructions:
01 <?xml version="1.0"?>
02 <!--hellohtm.xsl-->
03 <!--XSLT 1.0 - http://www.CraneSoftwrights.com/training -->
04 <html xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
05 xsl:version="1.0">
06 <head><title>Greeting</title></head>
07 <body><p>Words of greeting:

08 <i><u><xsl:value-of select="greeting"/></u></i>
09 </p>
10 </body>
11 </html>
12

Using an MSDOS command line invocation to execute the stand-alone processor explicitly
with a supplied stylesheet, we see the following result:
01 C:\ptux\samp>java -jar ../prog/saxon.jar hello.xml hellohtm.xsl
02 <html>
03 <head>
04 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
05 <title>Greeting</title>
06 </head>
07 <body>
08 <p>Words of greeting:
<i><u>Hello world.</u></i></p>
09 </body>
10 </html>
11 C:\ptux\samp>

Note how the end result contains a mixture of the stylesheet markup and the source instance
content, without any use of the XSLT vocabulary. The processor has recognized the use of
HTML by the type of the document element and has engaged SGML markup conventions.

The <meta> element on line 4 added by Saxon is ensuring the character set of the web page
is properly recognized by conforming user agents.

Page 49 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Some simple examples (cont.)
Chapter 2 - Getting started with XSLT and XPath
Section 1 - Transform examples

Consider next the following XSLT file hello.xsl to produce XML output using the HTML
vocabulary, where the output is serialized as XML:
01 <?xml version="1.0"?><!--hello.xsl-->
02 <!--XSLT 1.0 - http://www.CraneSoftwrights.com/training -->
03

04 <xsl:transform xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
05 version="1.0">
06

07 <xsl:output method="xml" omit-xml-declaration="yes"/>
08

09 <xsl:template match="/">
10 <i><u><xsl:value-of select="greeting"/></u></i>
11 </xsl:template>
12

13 </xsl:transform>

Remember that the syntax of the transform does not represent the syntax of the result, only
the nodes of the result; the following is the node tree (not showing attribute and namespace
nodes) of the stylesheet:

Element local-name="b"
namespace=""

Element local-name="i"
namespace=""

Element local-name="u"
namespace=""

Element local-name="transform"
namespace="http://www.w3.org/1999/XSL/Transform"

Element local-name="template"
namespace="http://www.w3.org/

1999/XSL/Transform"

Element local-name="value-of"
namespace="http://www.w3.org/1999/XSL/Transform"

Not shown: root, attribute and
namespace nodes

Element local-name="output"
namespace="http://www.w3.org/

1999/XSL/Transform"

Literal Result Element

Instruction Element

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 50 of 179

Practical Transformation Using XSLT and XPath

Some simple examples (cont.)
Chapter 2 - Getting started with XSLT and XPath
Section 1 - Transform examples

The node tree constructed using the stylesheet (page 50) on the source (page 48) is:

Element local-name="b"
namespace=""

Element local-name="i"
namespace=""

Element local-name="u"
namespace=""

Text
"Hello world. "

Not shown: root and
namespace nodes

- note from the drawing conventions how the element nodes come from the operation
node tree and the text node is calculated from the source node tree information

Using an MSDOS invocation to execute XSLT with the Saxon processor (with -o for the
output file and -a to respect stylesheet association) we see the following tree serialization:
01 C:\ptux\samp>java -jar ../prog/saxon.jar -o hello.htm -a hello.xml
02

03 C:\ptux\samp>type hello.htm
04 <i><u>Hello world.</u></i>
05 C:\ptux\samp>

The result hello.htm file serialization of the constructed node tree can be viewed with a
browser to see the results using the menu selection View/Source to examine the content:

Page 51 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Some simple examples (cont.)
Chapter 2 - Getting started with XSLT and XPath
Section 1 - Transform examples

Two ways of working with the Microsoft XSLT processor:

Using the msxml.bat invocation batch file (documented in detail in free download preview
of on-line tutorial material) at an MSDOS command line to execute the MSXML processor:
01 C:\ptux\samp>..\prog\msxml hello.xml hello.xsl hello-ms.htm
02 Invoking MSXML....
03

04 C:\ptux\samp>type hello-ms.htm
05 <i><u>Hello world.</u></i>
06 C:\ptux\samp>

Using IE to directly view the file will show the interpreted result on the browser canvas, in
such a way that the menu function View/Source reveals the untouched XML:

Other browsers support on-the-fly XSLT transformation
- not all browsers have XML processors that support all of the syntax features of XML

- e.g. lack of support for XML entities

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 52 of 179

Practical Transformation Using XSLT and XPath

XSLT stylesheet requirements
Chapter 2 - Getting started with XSLT and XPath
Section 2 - Syntax basics

An XSLT stylesheet:
- must identify the namespace prefix with which to recognize the XSLT vocabulary

- a typical namespace declaration attribute declares a particular URI for a given
prefix:

- xmlns:prefix="http://www.w3.org/1999/XSL/Transform"
- as a common practice the prefix "xsl" is used to identify the XSLT

vocabulary, though this is not mandatory
- historically this is because XSLT was first published as one chapter of

the XSL specification
- all of the examples for XSL were written with "xsl:" and remained

after XSLT was spun off as its own specification
- the default namespace should not be used to identify the XSLT vocabulary

- technically possible for elements of the vocabulary, but doing so
prevents XSLT vocabulary attributes to be used wherever possible

- not an issue for small stylesheets, but a maintenance headache if a large
stylesheet needs to begin using XSLT attributes

- extensions beyond the XSLT recommendation are outside the scope of the XSLT
vocabulary so must use another URI for such constructs

- must also indicate the version of XSLT required by the stylesheet
- this dictates the data model rules for building of the source tree based on XPath 1

or XPath 2
- also engages the incompatible version-specific behavior of the processor for certain

instructions
- using "1.0" for XSLT 2.0 either engages backwards-compatible behavior or

signals an error and does not execute the transformation
- in the start tag of an a element in the XSLT namespace

- version="version-number"
- attributes not in any namespace that are attached to an element in the XSLT

namespace are regarded as being in the XSLT namespace
- in the start tag of an element not in the XSLT namespace

- prefix:version="version-number"

Page 53 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
XSLT instructions and literal result elements
Chapter 2 - Getting started with XSLT and XPath
Section 2 - Syntax basics

An XSLT instruction:
- is detected in the stylesheet tree only

- not recognized if used in the source tree
- instruction defined by the XSLT recommendation and specified using the prefix

associated with the XSLT URI
- may be a control construct

- the wrapper and top-level elements
- procedural and process-control instructions
- logical and physical stylesheet maintenance facilities

- may be a construction construct
- synthesis of result tree nodes
- copying of nodes from a source node tree

- may be a text value placeholder
- any calculated value using <xsl:value-of> is replaced in situ
- <xsl:value-of select="greeting"/>
- this example instruction calculates the concatenation of all text portions of all

descendents of the first of the selected points in the source tree
- the select= attribute is an expression specifying the point in the source tree or,

more generally, the outcome of an arbitrary expression evaluation which in this
case is a node set

- the value "greeting" indicates the name of a direct element child node of the
current source tree focus, which at the time of execution in this example is the root
of the document (hence <greeting> must be the document element)

- may be a custom extension
- a non-standardized instruction implemented by the XSLT processor
- implements extensibility

- standardized fallback features allow any conforming XSLT processor to still
interpret a stylesheet that is using extensions

- specified using a namespace prefix associated with a URI known to the processor

A literal result element:
- any element not recognized to be an instruction

- used in stylesheet file
- any vocabulary that isn't a declared instruction vocabulary

- represents a result-tree node
- element and its associated attributes are to be added to the result

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 54 of 179

Practical Transformation Using XSLT and XPath

XSLT templates and template rules
Chapter 2 - Getting started with XSLT and XPath
Section 2 - Syntax basics

An XSLT template (a.k.a. "sequence constructor" in XSLT 2.0):
- specifies a fragment for constructing the result tree as a tree of nodes

- see the nodes in Some simple examples (page 50)
- expressed in syntax as a well-formed package of markup

- may or may not include XSLT instructions
01 <i><u><xsl:value-of select="greeting"/></u></i>

- a representation of the desired nodes to add to the result tree
- the XSLT processor recognizes any constructs therein from the XSLT vocabulary as

XSLT instructions and acts on them
- regards all other constructs not from the XSLT vocabulary as literal result elements

that comprise a representation of a tree fragment to add to the result tree

An XSLT template rule:
- a result tree construction rule associated with source tree nodes

- specifies the template to add to the result tree when processing a source tree node
- a "matching pattern" describes the nodes of the source tree
- see Extensible Stylesheet Language Transformations (XSLT) (page 23)

01 <xsl:template match="/">
02 <i><u><xsl:value-of select="greeting"/></u></i>
03 </xsl:template>

- prepares the XSLT processor for building a portion of the result tree whenever the
stylesheet asks the processor to visit the given source tree node

- uses the match= attribute as a "pattern" describing the characteristics of the source tree
node associated with the given template

- the pattern value "/" indicates the root of the source document (distinct from and
the hierarchical parent of the document element of the source document, therefore,
the very top of the hierarchy)

- a traditional stylesheet must declare all the stylesheet writer's template rules to be used
by the XSLT processor

- a simplified stylesheet defines in its entirety the one and only template rule for the
stylesheet, that being for the root node

XSLT processor first visits the source tree root node:
- the root node template rule begins the construction of the result tree
- all subsequent construction is controlled by the stylesheet

 Can begin processing at a specified named template or mode at invocation
- source tree is optional when starting at an arbitrary rule

Page 55 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
XSLT stylesheet components
Chapter 2 - Getting started with XSLT and XPath
Section 2 - Syntax basics

A "simplified" XSLT stylesheet:
- can be declared inside an arbitrary XML document (e.g. an XHTML document) by using

namespace declarations for XSLT constructs found within
- the entire stylesheet file is a template for the entire result tree

- regarded as the template rule for the root node
- identifiable components of this implicitly declared XSLT script:

<?xml version="1.0"?>

<html xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xsl:version="1.0">

 <head><title>Greeting</title></head>

 <body><p>Words of greeting:

 <i><u><xsl:value-of select="greeting"/></u></i>

 </p></body>

</html> Literal Result Elements

XML Declaration
XSLT Namespace Declaration

Result Tree
Template

Version of XSLT required
by the Stylesheet

XSLT Instruction

A more traditional stylesheet:
- can be written as an entire XML document (or embedded fragment in an XML document)

by using a stylesheet document element as the explicit container
- traditional stylesheets can be utilized by other explicitly declared stylesheets
- identifiable components of this traditional XSLT script:

<?xml version="1.0"?>

<xsl:transform xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0">

<xsl:output method="xml" indent="yes"/>

<xsl:template match="/">

 <i><u><xsl:value-of select="greeting"/></u></i>

</xsl:template>

</xsl:transform>
XSLT Instruction

Result Tree
Template

XSLT Namespace Declaration

Template
Rule

Document
Element

Top-level
Elements

XML Declaration

Version of XSLT
required by the

Stylesheet

Literal Result Elements

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 56 of 179

Practical Transformation Using XSLT and XPath

Pull and push constructs
Chapter 2 - Getting started with XSLT and XPath
Section 3 - Approaches to transform design

Consider for illustration an XML file containing sale and purchase information maintained
chronologically, thus in an arbitrary order:
<chrono-info>
 <purchase>...</purchase>
 <sale>...</sale>
 <sale>...</sale>
 <purchase>...</purchase>
 <sale>...</sale>
 <purchase>...</purchase>
</chrono-info>

How one approaches accessing the information to create the result tree varies
- one can pull the information out of the source node tree
- one can push the information from the source node tree at the stylesheet

Page 57 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Pull and push constructs (cont.)
Chapter 2 - Getting started with XSLT and XPath
Section 3 - Approaches to transform design

Pulling the input data and repositioning in the tree
- the hierarchy of the source file is known by the transform writer
- at the point of building "the next" part of the result tree

The transform "pulls" information as and when needed:
- from known locations in the source node tree
- for extraction or calculation using the lexical value

- <xsl:value-of select="string(XPath-expression)"/>
- for extraction or calculation using the schema-qualified value

- <xsl:value-of select="XPath-expression"/>
- for wholesale copying of source tree nodes

- <xsl:copy-of select="XPath-expression"/>
- for repositioning over a sequence of arbitrary locations or values of any data type

- <xsl:for-each select="XPath-node-set-expression">
...template...

</xsl:for-each>
- <xsl:for-each select="XPath-sequence-expression">

...template...
 </xsl:for-each>

Transform-determined result order implements direct document construction
- the result tree is built by the transform obtaining each result component from the source,

in result order, and framing each component as required with literal markup from the
transform

- if the result can be described as a single template using only the "pull" instructions, the
transform can be simply declared as a single result template

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 58 of 179

Practical Transformation Using XSLT and XPath

Pull and push constructs (cont.)
Chapter 2 - Getting started with XSLT and XPath
Section 3 - Approaches to transform design

Pull example
- to process all of the sales records together, followed by all of the purchase records

together, they are pulled from the source tree one set before the others:
- <xsl:template match="chrono-info">
 <sale-purchase-summary>
 <xsl:for-each select="sale">

...template for the sale...
 </xsl:for-each>
 <xsl:for-each select="purchase">

...template for the purchase...
 </xsl:for-each>
 </sale-purchase-summary>
</xsl:template>

- each address "sale" and "purchase" will respectively find all <sale> and <purchase>
child elements of <chrono-info>

- the order of the two instructions will construct the result tree by adding one template
for each of the sale elements until all sale elements have been addressed, followed then
by adding one template for each of the purchase elements until all purchase elements
have been addressed:

- <sale-purchase-summary>
...result construction for sale...
...result construction for sale...
...result construction for sale...
...result construction for purchase...
...result construction for purchase...
...result construction for purchase...
</sale-purchase-summary>

Recall the input elements shown on page 57

Page 59 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Pull and push constructs (cont.)
Chapter 2 - Getting started with XSLT and XPath
Section 3 - Approaches to transform design

Pushing the input data and repositioning in the tree
- arbitrary or unexpected source structure

- the structure of the source file is not in either an expected or explicit order
- source file order must be accommodated by transformation

- to process all of the records in the order they appear in the document, they are pushed
through the transform logic while specifying the union of all such nodes

XSLT stylesheets:
- the stylesheet "pushes" nodes of information at the template rules:

- visits known (using names) or unknown (using a wild card) source tree nodes
- <xsl:apply-templates select="XPath-node-expression">

- template rules respond to node visitations by constructing the result tree:
- <xsl:template match="XPath-pattern">

Source-determined result order implements indirect tree construction
- the <xsl:apply-templates> instruction is the event generators

- selects the source information the processor is to visit
- the <xsl:template> template rule is the event handler

- the type of event described as a qualification of the source information in the
match= attribute

Note it is not necessary to exclusively use one approach or the other
- transforms alternately push some of the input data through the processor (data driven)

and pull the same or other input data where required (transform driven)
- the pulling of data that is relative to the data being pushed can be done in the template

catching the data being pushed

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 60 of 179

Practical Transformation Using XSLT and XPath

Pull and push constructs (cont.)
Chapter 2 - Getting started with XSLT and XPath
Section 3 - Approaches to transform design

Push example
- using XSLT:

- <xsl:template match="chrono-info">
 <sale-purchase-summary>
 <xsl:apply-templates select="sale | purchase"/>
 </sale-purchase-summary>
<xsl:template>

- where each construct being pushed must somehow be handled by the stylesheet:
- <xsl:template match="sale">...template...</xsl:template>
<xsl:template match="purchase">...template...</xsl:template>

- each address "sale" and "purchase" will respectively find all <sale> and all
<purchase> elements in the source tree, but the union operator "|" will return the set
of all those nodes in document order which may very well be interleaved

- the order of the two result expressions is irrelevant because each result expression will
be triggered only by the kind of node being matched

- this will construct the result tree by adding one template for each of the sale elements
and purchase elements in the document order encountered in the source tree:

- <sale-purchase-summary>
...result construction for purchase...
...result construction for sale...
...result construction for sale...
...result construction for purchase...
...result construction for sale...
...result construction for purchase...
</sale-purchase-summary>

Recall the input elements shown on page 57

Contrast the result with that of the pull approach on page 59

Page 61 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Processing XML with many transforms
Chapter 2 - Getting started with XSLT and XPath
Section 4 - More transform examples

Consider the data file prod.xml containing some sales data information:
01 <?xml version="1.0"?><!--prod.xml-->
02 <!DOCTYPE sales [
03 <!ELEMENT sales (products, record)> <!--sales information-->
04 <!ELEMENT products (product+)> <!--product record-->
05 <!ELEMENT product (#PCDATA)> <!--product information-->
06 <!ATTLIST product id ID #REQUIRED>
07 <!ELEMENT record (cust+)> <!--sales record-->
08 <!ELEMENT cust (prodsale+)> <!--customer sales record-->
09 <!ATTLIST cust num CDATA #REQUIRED> <!--customer number-->
10 <!ELEMENT prodsale (#PCDATA)> <!--product sale record-->
11 <!ATTLIST prodsale idref IDREF #REQUIRED>
12]>
13 <sales>
14 <products><product id="p1">Packing Boxes</product>
15 <product id="p2">Packing Tape</product></products>
16 <record><cust num="C1001">
17 <prodsale idref="p1">100</prodsale>
18 <prodsale idref="p2">200</prodsale></cust>
19 <cust num="C1002">
20 <prodsale idref="p2">50</prodsale></cust>
21 <cust num="C1003">
22 <prodsale idref="p1">75</prodsale>
23 <prodsale idref="p2">15</prodsale></cust></record>
24 </sales>

Of note:
- each product is identified with id= declared to be of type ID

- permits the element to be addressed with a unique identifier
- there is no total information, only information about each product sale
- the product names are not duplicated

- the product information is referenced using idref= from the product sale

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 62 of 179

Practical Transformation Using XSLT and XPath

Processing XML with many transforms (cont.)
Chapter 2 - Getting started with XSLT and XPath
Section 4 - More transform examples

The equivalent set of document constraints on the logical hierarchy expressed using W3C
Schema could be in prod.xsd:
01 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
02 <xsd:element name="sales">
03 <xsd:complexType>
04 <xsd:sequence>
05 <xsd:element name="products">
06 <xsd:complexType>
07 <xsd:sequence>
08 <xsd:element name="product" maxOccurs="unbounded">
09 <xsd:complexType mixed="true">
10 <xsd:attribute name="id" type="xsd:ID"/>
11 </xsd:complexType>
12 </xsd:element>
13 </xsd:sequence>
14 </xsd:complexType>
15 </xsd:element>
16 <xsd:element name="record">
17 <xsd:complexType>
18 <xsd:sequence>
19 <xsd:element name="cust" maxOccurs="unbounded">
20 <xsd:complexType>
21 <xsd:sequence>
22 <xsd:element name="prodsale" maxOccurs="unbounded">
23 <xsd:complexType>
24 <xsd:simpleContent>
25 <xsd:extension base="xsd:integer">
26 <xsd:attribute name="idref" type="xsd:IDREF"/>
27 </xsd:extension>
28 </xsd:simpleContent>
29 </xsd:complexType>
30 </xsd:element>
31 </xsd:sequence>
32 <xsd:attribute name="num" type="xsd:string"/>
33 </xsd:complexType>
34 </xsd:element>
35 </xsd:sequence>
36 </xsd:complexType>
37 </xsd:element>
38 </xsd:sequence>
39 </xsd:complexType>
40 </xsd:element>
41 </xsd:schema>

- note the declaration of prodsale is an integer value
- note the ID/IDREF relationships expressed between id= and idref=

Page 63 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Processing XML with many transforms (cont.)
Chapter 2 - Getting started with XSLT and XPath
Section 4 - More transform examples

The hint that a particular W3C Schema applies to a document is given via reserved attributes
- a processor is not obliged to use the hints

The following document has a self-referential consistency error that will not be detected unless
schema validation is turned on:

- note how customer C1003 has a product sale pointing to a non-existent product

In addition, the ID/IDREF relationships are not recognized unless schema validation is turned
on:

- any built-in facilities for supporting ID-typed attributes are not engaged
01 <?xml version="1.0"?><!--prod-bad.xml-->
02 <sales xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
03 xsi:noNamespaceSchemaLocation="prod.xsd">
04 <products><product id="p1">Packing Boxes</product>
05 <product id="p2">Packing Tape</product></products>
06 <record><cust num="C1001">
07 <prodsale idref="p1">100</prodsale>
08 <prodsale idref="p2">200</prodsale></cust>
09 <cust num="C1002">
10 <prodsale idref="p2">50</prodsale></cust>
11 <cust num="C1003">
12 <prodsale idref="p1">75</prodsale>
13 <prodsale idref="p3">15</prodsale></cust></record>
14 </sales>

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 64 of 179

Practical Transformation Using XSLT and XPath

Processing XML with many transforms (cont.)
Chapter 2 - Getting started with XSLT and XPath
Section 4 - More transform examples

Recall the sample data on page 62
- very dissimilar reports could be generated for the one data file by using different

transforms:

Of note:
- items are rearranged from one authored order to two different presentation orders
- transformation includes calculation of sum of marked up values

Page 65 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Processing XML with many transforms (cont.)
Chapter 2 - Getting started with XSLT and XPath
Section 4 - More transform examples

Recall the sample data on page 62
- any result vocabulary can be used; for example, WML rendered on a mobile device:

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 66 of 179

Practical Transformation Using XSLT and XPath

Processing XML with many transforms (cont.)
Chapter 2 - Getting started with XSLT and XPath
Section 4 - More transform examples

The simplified stylesheet prod-pull.xsl for the table (page 65) for the XML (page 62):
01 <?xml version="1.0"?><!--prod-pull.xsl-->
02 <!--XSLT 1.0 - http://www.CraneSoftwrights.com/training -->
03 <html xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
04 xsl:version="1.0">
05 <head><title>Product Sales Summary</title></head>
06 <body><h2>Product Sales Summary</h2>
07 <table summary="Product Sales Summary" border="1">
08 <!--list products-->
09 <tr align="center"><th/>
10 <xsl:for-each select="//product">
11 <th><xsl:value-of select="."/></th>
12 </xsl:for-each></tr>
13 <!--list customers-->
14 <xsl:for-each select="/sales/record/cust">
15 <xsl:variable name="customer" select="."/>
16 <tr align="right">
17 <td><xsl:value-of select="@num"/></td>
18 <xsl:for-each select="//product"> <!--each product-->
19 <td><xsl:value-of select="$customer/prodsale
20 [@idref=current()/@id]"/>
21 </td></xsl:for-each>
22 </tr></xsl:for-each>
23 <!--summarize-->
24 <tr align="right"><td>Totals:</td>
25 <xsl:for-each select="//product">
26 <xsl:variable name="pid" select="@id"/>
27 <td><i><xsl:value-of
28 select="sum(//prodsale[@idref=$pid])"/></i>
29 </td></xsl:for-each></tr>
30 </table>
31 </body></html>

Information added from the stylesheet and pulled from the source document:
- the header and body title are hardwired content from stylesheet
- the table's header row comes from each product name in source
- the customer information is visited to produce rows (note use of variable)

- sale information produces columns
- total information is generated by stylesheet using sum() built-in function (no custom

node-traversal programming needed)

Page 67 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Processing XML with many transforms (cont.)
Chapter 2 - Getting started with XSLT and XPath
Section 4 - More transform examples

The traditional stylesheet prod-push.xsl for the list (page 65) for the XML (page 62):
01 <?xml version="1.0"?><!--prod-push.xsl-->
02 <!--XSLT 1.0 - http://www.CraneSoftwrights.com/training -->
03 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
04 version="1.0">
05

06 <xsl:template match="record"> <!--processing for each record-->
07 <xsl:apply-templates/></xsl:template>
08

09 <xsl:template match="prodsale"> <!--processing for each sale-->
10 <xsl:value-of select="../@num"/> <!--use parent's attr-->
11 <xsl:text> - </xsl:text>
12 <xsl:value-of select="id(@idref)"/> <!--go indirect-->
13 <xsl:text> - </xsl:text>
14 <xsl:value-of select="."/></xsl:template>
15

16 <xsl:template match="/"> <!--root rule-->
17 <html><head><title>Record of Sales</title></head>
18 <body><h2>Record of Sales</h2>
19 <xsl:apply-templates select="/sales/record"/>
20 </body></html></xsl:template>
21

22 </xsl:stylesheet>

Source document is pushed through the stylesheet:
- the order of the template rules is irrelevant

- only one node is being pushed at the stylesheet, so only one template responds
- the header and body title are hardwired content from stylesheet
- the root rule pushes all sales records through the stylesheet
- each record produces the unordered list wrapper for list items and pushes child

elements through the stylesheet
- each child element pushed through produces a list item that pulls information from the

parent and from an arbitrary place of the source

An importing stylesheet can exploit the template rule fragmentation
- another stylesheet can import this stylesheet and specialize the behavior of any top-level

construct
- an overriding definition of any template rule will take precedence over that rule in the

above transformation

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 68 of 179

Practical Transformation Using XSLT and XPath

Processing XML with many transforms (cont.)
Chapter 2 - Getting started with XSLT and XPath
Section 4 - More transform examples

The traditional stylesheet prod-wml.xsl for the WML (page 66) and XML (page 62):
01 <?xml version="1.0"?><!--prod-wml.xsl-->
02 <!--XSLT 1.0 - http://www.CraneSoftwrights.com/training -->
03 <xsl:stylesheet version="1.0"
04 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
05 <xsl:output doctype-system="http://CRANE/wml13.dtd"/>
06

07 <xsl:template match="/"> <!--root rule-->
08 <wml><card title="Record of Sales"> <!--index card-->
09 <p>Record of Sales</p>
10 <p><select name="cards">
11 <xsl:apply-templates mode="head"
12 select="/sales/record/cust"/>
13 </select></p></card>
14 <xsl:apply-templates select="/sales/record/cust"/>
15 </wml></xsl:template>
16

17 <xsl:template match="cust" mode="head"><!--index entry-->
18 <option onpick="#{@num}">
19 <xsl:text/>Customer <xsl:value-of select="@num"/>
20 </option></xsl:template>
21

22 <xsl:template match="cust"><!--customer's card in deck-->
23 <card id="{@num}" title="Customer {@num}">
24 <p><xsl:value-of select="@num"/></p>
25 <p>Items: <xsl:value-of select="count(prodsale)"/></p>
26 <p>Total: <xsl:value-of select="sum(prodsale)"/></p>
27 <xsl:apply-templates/></card></xsl:template>
28

29 <xsl:template match="prodsale"><!--proc for each sale-->
30 <p><xsl:value-of select="id(@idref)"/> <!--indirect-->
31 <xsl:text> - </xsl:text>
32 <xsl:value-of select="."/></p></xsl:template>
33

34 </xsl:stylesheet>

Source document is pushed through the stylesheet:
- the same source is visited twice using different template rules for processing to produce

different results

An importing stylesheet can exploit the template rule fragmentation
- another stylesheet can import this stylesheet and specialize the behavior of any top-level

construct
- an overriding definition of any template rule will take precedence over that rule in the

above transformation

Page 69 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Chapter 3 - XPath data model

- Introduction - The need for abstractions

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 70 of 179

Practical Transformation Using XSLT and XPath

The need for abstractions
Chapter 3 - XPath data model

Dealing with information, not markup
- all input and output information manipulated in an abstract fashion
- separate node structures of information:

- source trees (example on page 48)
- the main source tree is optional in XSLT 2
- the main source tree is required in XSLT 1
- multiple additional source documents may be read as separate node structures

- operation tree (stylesheet example on page 50)
- result tree (example on page 51)

- multiple result trees can be created using XSLT 2
- knowledge of input markup and control of output markup out of the hands of the

transform writer
- the writer deals with nodes of information, not characters of markup

Traversing a source document or transform document predictably
- XML syntax processed into an abstract data model tree of nodes

- documents are described according to a data model for the XML markup
- interpreted in terms of the XML Information Set

- http://www.w3.org/TR/xml-infoset/
- maintained in terms of a formal XPath data model

- http://www.w3.org/TR/xpath-datamodel/
- all nodes created are typed, and have a value that can be used as a string of text
- some nodes have an associated name, while other nodes are unnamed
- some nodes have types based on W3C Schema post-schema validation infoset

- http://www.w3.org/TR/xmlschema-1/#d0e504
- the processor performs all operations using the node tree, not the document directly

- the actual markup used in input instances is not preserved
- there are no constraints or requirements of the XML source in that any

well-formed markup chosen by the author of an XML document is represented
abstractly in the tree

- XPath node tree navigation
- the transform can navigate around the source node tree in many directions
- thirteen axes of direction that can be traversed relative to the context (current) node
- the transform is responsible for specifying which source nodes get processed when

and how

The XPath data model and the DOM data model are different
- the Document Object Model (DOM) is a data model of the information including the

syntax in an XML document
- XPath is a data model of the information not including the syntax in an XML document

Page 71 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
The need for abstractions (cont.)
Chapter 3 - XPath data model

Consider an XML document comprised of 26 empty and non-empty elements named "A"
through "Z" (without any text or new-line characters of any kind):
01 <A><C/><D/><E/><F><G><H/></G><I/><J><K/><L><M/><N/></L><O/>
02 <P/><Q><R/><S/></Q></J><T/><U><V/></U></F><W/><X/><Y><Z/></Y>

The following depicts this document's complete node tree (not showing namespaces):

self::

root

ancestor-or-self::

ancestor::

parent::

preceding-sibling::

descendant::

following-sibling::

child::

preceding:: following::

descendant-or-self::

(1) not shown: attribute and
namespace nodes and axes
(2) letter order indicates nodes
in document order

A

B

G I

ED

C

F

H K

M

L

J

N

P Q

W YX

ZT U

V

SR

O

- the root of the tree is at the top
- the leaves of the tree are towards the bottom
- the context node in this example is in the center with the bold circle
- the dotted lines completely surround the nodes of the tree that are members of each axis

relative to the context node

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 72 of 179

Practical Transformation Using XSLT and XPath

Data types
Chapter 3 - XPath data model

 XPath 1.0 treats node values as strings and has a limited number of data types
- boolean, number, string, node set and result tree fragment

 XPath 2.0 introduces data types based on the W3C Schema data type hierarchy:

anyAtomicType

duration

dateTime

time

date

gYearMonth

gYear

gMonthDay

gDay

gMonth

string token language

Name NCName

ID

IDREF IDREFS

ENTITY ENTITIES

NMTOKEN NMTOKENS

boolean

base64Binary

hexBinary

double

decimal

float

anyURI

QName

NOTATION

normalized

String

"instance of", variables and
casting allowed

schema-aware only support
for "instance of", variables
and casting

Background
Legend:

XSD primitive types

user-defined
content types

untypedAtomic

element

document

attribute

namespace

text

comment

yearMonthDuration

dayTimeDuration

processing-instruction

user-document

user-element

user-attribute

XPath primitive
types

item

node

XPath derived types

XSD derived types

integer long int short byte

nonNegative
Integer

nonPositive

Integer

positive
Integer

negative

Integer

unsigned

Long

unsigned

Int

unsigned

Short

unsigned

Byte

"instance of" and variables
allowed, but never casting

When referenced in transforms, types must be namespace qualified:
- e.g. xmlns:xs="http://www.w3.org/2001/XMLSchema"

- any prefix can be used

Types allowed for casting are value constructors when used with function syntax:
- <xsl:variable name="meetingStart" as="xs:dateTime"
 select="xs:dateTime('2005-12-04T11:00:00Z')"/>

 Some types are only available in schema-aware versions of the processor
- e.g. NOTATION and most XSD derived types

Page 73 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Sequence types
Chapter 3 - XPath data model

A sequence type is a declaration combination of data type and cardinality
- item() - union of any node type or atomic value
- node() - any node (tree construction - see page 70)

- seven types of tree nodes described in this chapter
- e.g. element(), attribute(), text(), etc.
- three types of named tree nodes described in this chapter
- e.g. element(name), attribute(name), processing-instruction(name)
- two types of typed tree nodes described in this chapter
- e.g. element(name,type), attribute(name,type)
- two types of declared tree nodes described in this chapter
- e.g. schema-element(name), schema-attribute(name)
- qualified document nodes described in this chapter
- e.g. document-node(element-name-type-declaration-test)
- user-defined globally-declared types
- e.g. mySchema:zip-code

- xs:anyAtomicType - any atomic value (lexical construction - see page 73)
- W3C Schema data types
- e.g. xs:string, xs:integer, xs:duration, xs:gMonth, etc.
- XPath 2 data types
- e.g. xs:dayTimeDuration, xs:yearMonthDuration
- e.g. xs:untypedAtomic - an atomic value without a type

Non-zero cardinality specified using Kleene operators "+", "?" and "*", for example:
- empty-sequence() - zero to zero (i.e. no items of any kind)
- xs:string - exactly one string (i.e. mandatory)
- xs:string? - zero or one strings (i.e. optional)
- xs:string+ - one or more strings (i.e. mandatory and repeatable)
- xs:string* - zero or more strings (i.e. optional and repeatable)
- element(email)+ - one or more <email> elements
- element(email)? - zero or one <email> elements
- xs:item()* - zero or more items of any type

The following data types are not allowed as sequence types
- xs:anyType (un-validated element node)
- xs:untyped (un-validated attribute node content)
- xs:anySimpleType (lists and unions only)

- includes xs:IDREFS, xs:NMTOKENS and xs:ENTITIES
- includes user-defined list and union types

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 74 of 179

Practical Transformation Using XSLT and XPath

Constructing result trees
Chapter 3 - XPath data model

Building a result predictably
- created as an abstract tree of nodes

- the result node tree is constructed using nodes from the operation and source trees,
and nodes synthesized by operation tree expressions

- result is described according to the same data model for XML markup as is used
for input

- the processing of a template builds a portion of the result as sub-tree of nodes
reflecting the output information

- the interpretation of a result template is reliable and reproducible
- the processor acts on instructions the same way every time
- some aspects (e.g. order of attribute) is implementation-dependent

- one-pass construction of the result tree
- no "going back and changing" anything in the result tree
- created in a single pass in result parse-order

- serialization instantiates markup syntax
- the emission of the result node tree (if so desired)
- in XML markup according to the standard

- the transform writer does not control which markup constructs are used for
representing XML information

- the processor can make arbitrary decisions as long as the end result is well
formed

- using alternative markup or syntax conventions if made available by the processor
(e.g.: interpretation of a colloquial vocabulary into a binary format)

Page 75 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
XPath data model
Chapter 3 - XPath data model

The XPath productions covered in this chapter are:
- (: :)

- commenting XPath expressions
- if () then else

- XPath choice statement
- for ... return ...

- XPath tuple statement
- empty-sequence()

- the empty sequence sequence type
- /

- location path address steps
- $

- variable references
- ()

- parenthesized expressions

The XSLT instructions covered in this chapter are:
- <xsl:strip-space>

- indicate those source tree nodes in which white-space-only text nodes are not to
be preserved.

- <xsl:preserve-space>
- indicate those source tree nodes in which white-space-only text nodes are to be

preserved

The XPath functions covered in this chapter are:
- last()

- the number of nodes in the context/current node list
- position()

- the ordinal number of the current node in the context/current node list
- .

- context item

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 76 of 179

Practical Transformation Using XSLT and XPath

Chapter 4 - Processing model

- Introduction - A predictable behavior for processors

Page 77 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
A predictable behavior for processors
Chapter 4 - Processing model

The basic processing model for XSLT is designed to ensure predictability
- predictable processing behavior every time

- all aspects of the processing are well-defined
- processor builds the operation tree of nodes from the transformation expression

- some nodes of which are evaluations and calculations
- some nodes of which may be engaging extensions implemented by the processor
- the remainder of which are literal result elements that are to be used in the

construction of the result
- processor builds the source tree of nodes from the primary source resource

- a primary source tree is not required
- the markup of the XML source document is not material
- the vocabulary used in the source is not material to the processor

- with the exception of xml:*= attributes available for use with all XML
vocabularies

- result tree construction starts with operation tree
- start with the template of the template rule for the root node
- alternatively start at a specified named template or mode

- the transform constructs the content of the result node tree in result parse order in one
pass

- the transform writer must plan the flow of the transform process according to the
document order of the result

- other source trees are created from other source files on request by the transform
- components from the source trees are obtained where required when executing

instructions found in the transform
- once a portion of the result tree is completely generated there is no method of

returning to modify the result tree in any way
- the result tree of nodes may be serialized into markup

- XML markup
- HTML markup (using SGML lexical conventions)
- XHTML markup (using XML lexical conventions)
- simple text
- syntax and lexical conventions recognized by the particular implementation of the

processor (binary or text)
- interpreted XSL formatting objects (e.g.: display, print, aural, etc.)
- remember the processor is not required to support any particular serialization

method and may choose to serialize the tree as XML only if at all

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 78 of 179

Practical Transformation Using XSLT and XPath

A predictable behavior for processors (cont.)
Chapter 4 - Processing model

A simple illustration of the basic process
- the illustrated operation node tree has literal result nodes and a single operation node
- the operation node obtains information from a particular point in the source tree
- not shown in this illustration are built in behaviors copying nodes to the result tree

Processor

XQuery/
XSLT

XML
XML

Source

Transform

Operation
Execution 3'

4' 5'

A

B

1

2

Source
Node
Tree

Result
Node
Tree

Operation
Node Tree

Legend:
Source
Node

Literal Result
Node

Action
Node

3

4 5

XSL
Formatting

Objects

XSL
Formatting

Objects

Result

Non-
XML

XHTML

HTML

XSL
Formatting

Objects

Data
Projection

DC

A'

B' D'

The diagram's action nodes are created from XSLT instructions.

Page 79 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
A predictable behavior for processors (cont.)
Chapter 4 - Processing model

The XSLT instructions covered in this chapter are as follows.

Instructions related to process control:
- <xsl:if>

- single-state conditional inclusion of a template
- <xsl:choose>

- multiple-state conditional inclusion of one of a number of templates
- <xsl:when>

- single-state conditional inclusion of a template within a multiple-state condition
- <xsl:otherwise>

- default-state conditional inclusion of a template within a multiple-state condition

Instructions to pull information from the source tree or to calculate values:
- <xsl:copy-of>

- add to the result tree a copy of nodes from the source tree
- <xsl:value-of>

- add to the result tree the evaluation of an expression or the value of a source tree
node

- <xsl:for-each>
- reposition to a selection of source tree nodes or values using a supplied template

Instructions to push information from the source tree through the stylesheet:
- <xsl:apply-templates>

- supply a selection of source tree nodes to push through template rules
- <xsl:template>

- define a template rule

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 80 of 179

Practical Transformation Using XSLT and XPath

Chapter 5 - Transformation environment

- Introduction - The transformation environment

Page 81 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
The transformation environment
Chapter 5 - Transformation environment

Different ways are available to communicate to and from a processor
- some aspects of transformation are under transform control
- others cannot be manipulated under transform control

XPath 2 functions for diagnostics
- error()

- signaling a premature end of process
- trace()

- diagnostic reporting of function values

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 82 of 179

Practical Transformation Using XSLT and XPath

The transformation environment (cont.)
Chapter 5 - Transformation environment

The XSLT instructions covered in this chapter are as follows.

Wrapping the content of a stylesheet:
- <xsl:stylesheet>

- encapsulate a stylesheet specification
- <xsl:transform>

- encapsulate a stylesheet specification

Schemas and serialization:
- <xsl:namespace-alias>

- specify a result tree namespace translation
- <xsl:output>

- specify the desired serialization of the result tree
- <xsl:character-map>

- specify a translation of characters during serialization
- <xsl:output-character>

- specify a translation of single character during serialization
- <xsl:import-schema>

- gain the awareness of user-defined data types
- <xsl:result-document>

- create more than a single result tree

Communicating with the operator:
- <xsl:message>

- report a stylesheet condition to the operator
- <xsl:param>

- supply a parameterized value from the operator

The functions covered in this chapter are as follows.

Environment functions:
- system-property()

- accessing system-defined property strings
- type-available()

- accessing system-defined property strings

Page 83 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Chapter 6 - Transform and data management

- Introduction - Why modularize logical and physical structures?

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 84 of 179

Practical Transformation Using XSLT and XPath

Why modularize logical and physical structures?
Chapter 6 - Transform and data management

Modularizing the logical structure supports development
- manipulating or reusing transform fragments within a given transform
- declaration and reuse of syntactic packages of transform logic and markup
- parameterization of a template
- writing a template once and using it many places
- defining a value and referencing it many places

This chapter overviews logical modularization using:
- XML internal general entities in XSLT stylesheets
- XML internal general entities in marked sections in external parameter entities
- variable bindings
- user-defined functions
- XSLT named templates

Page 85 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Why modularize logical and physical structures?
(cont.)
Chapter 6 - Transform and data management

Modularizing the physical structure of transforms supports reuse
- compartmentalization of code
- sharing and reuse of transform fragments across an organization
- support for organizational rules for source code control and management
- access to any built-in custom extension function

- if available in the processor implementation

This chapter overviews physical modularization using:
- XML external parsed general entities in XSLT stylesheets
- XSLT included and imported stylesheets
- extension functions
- XSLT extension elements (instructions)

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 86 of 179

Practical Transformation Using XSLT and XPath

Why modularize logical and physical structures?
(cont.)
Chapter 6 - Transform and data management

Modularizing the data supports reuse
- compartmentalization of data
- focusing the responsibility of data to its most appropriate custodians
- sharing and reuse of content across an organization
- accessing content of different kinds through data projection

 XML

source data
projections

XSLT/
XQ

XML

transform

Result

data sources

Flat
files

Data
bases

Feeds

XML

 XML

 XML

Transform
Process

This chapter overviews physical modularization using:
- XML external unparsed entities
- XPath functions for data access
- XSLT functions for data access

Page 87 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Why modularize logical and physical structures?
(cont.)
Chapter 6 - Transform and data management

The XSLT instructions covered in this chapter are as follows.

Instructions related to logical modularization:
- <xsl:call-template>

- process a stand-alone template on demand
- <xsl:template>

- declare a template to be called by name as an instruction in XSLT
- <xsl:function>

- declare a function to be called by name as an subroutine in XPath
- <xsl:sequence>

- using XPath to express values returned by a function or a template
- <xsl:variable>

- declare a non-parameterized variable and its bound value
- <xsl:param>

- declare a parameterized variable and its default bound value
- <xsl:with-param>

- specify a binding value for a parameterized variable

Instructions related to physical modularization:
- <xsl:include>

- include a stylesheet without overriding stylesheet constructs
- <xsl:import>

- import a stylesheet while overriding stylesheet constructs
- <xsl:apply-imports>

- override the importation of template rules
- <xsl:next-match>

- override the priority and importation of template rules
- <xsl:fallback>

- accommodate the lack of implementation of an instruction element

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 88 of 179

Practical Transformation Using XSLT and XPath

Why modularize logical and physical structures?
(cont.)
Chapter 6 - Transform and data management

The functions covered in this chapter are as follows.

Availability functions:
- element-available()

- determine the availability of an instruction element
- function-available()

- determine the availability of a function

Functions related to data modularization:
- collection()

- access to a collection of documents
- doc()

- access to multiple source documents
- doc-available()

- check for a document
- document()

- access to multiple source documents
- unparsed-entity-public-id()

- finding the public identifier of an unparsed entity
- unparsed-entity-uri()

- finding the URI of an unparsed entity
- unparsed-text()

- access to multiple documents
- unparsed-text-available()

- check for a document

Page 89 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Chapter 7 - Data type expressions and functions

- Introduction - Data type expressions and functions

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 90 of 179

Practical Transformation Using XSLT and XPath

Data type expressions and functions
Chapter 7 - Data type expressions and functions

Powerful functions and expression support
- this chapter describes functions and expressions to manipulate variables and values of

data types
- the XSLT specification includes facilities implementing algorithms for

publishing-oriented facilities so that the stylesheet writer doesn't have to
- value manipulation

- boolean functions and operators
- number functions and operators
- string functions
- node set functions and operators
- sequence functions and operator
- date and time functions and operators
- item functions and operators

- regular expressions
- string analysis
- access to the source node tree

- de-referencing pointers between information items
- setting up lookup tables to tree nodes

This training material assumes xmlns:xs="http://www.w3.org/2001/XMLSchema" when
referencing W3C Schema data types

Advanced techniques
- this chapter also describes an approach to walking the source node tree in search of

information in such a way that is impossible through available pattern matching
techniques.

Page 91 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Data type expressions and functions (cont.)
Chapter 7 - Data type expressions and functions

The XPath keywords covered in this chapter are as follows.
- |

- union operator
- union

- union operator
- intersect

- intersection operator
- except

- exception operator
- to

- create a sequence of integers
- instance of

- testing the type of an item
- castable as

- testing the conversion of an item
- cast as

- converting an item to the given type
- treat as

- validating an item as a given type
- or

- boolean operator
- and

- boolean operator
- is << >>

- document order comparison operators
- eq ne lt le gt ge

- singleton value comparison operators
- = != < <= > >=

- value comparison operators
- some every

- quantified expressions

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 92 of 179

Practical Transformation Using XSLT and XPath

Data type expressions and functions (cont.)
Chapter 7 - Data type expressions and functions

The XSLT instructions covered in this chapter are as follows.

Instruction related to string formatting:
- <xsl:decimal-format>

- control the formatting of numbers when added to the result tree

 Instruction related to string analysis and regular expressions:
- <xsl:analyze-string>

- determine the matching components in an analysis of a string
- <xsl:matching-substring>

- act on matching components from the analysis of a string
- <xsl:non-matching-substring>

- act on non-matching components from the analysis of a string

Instruction related to advanced access to the source node tree:
- <xsl:key>

- declare key nodes in the source tree node for bulk processing

Instruction related to advanced algorithmic techniques:
- <xsl:call-template>

- use named templates with subroutine-like control

Page 93 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Data type expressions and functions (cont.)
Chapter 7 - Data type expressions and functions

The functions covered in this chapter are as follows.

Functions related to boolean data types:
- boolean()

- casting an argument to a boolean value
- false()

- a fixed boolean value
- lang()

- finding the in-scope language as specified by xml:lang=
- not()

- inverting the boolean value of the argument
- true()

- a fixed boolean value

Functions related to number data types:
- abs()

- returning the absolute value
- ceiling()

- rounding a number up
- floor()

- rounding a number down
- number()

- casting an argument to a number
- round()

- rounding a number
- round-half-to-even()

- rounding a number

Functions related to string data types:
- codepoint-equal()

- Unicode string comparison
- codepoints-to-string()

- Unicode string conversion
- compare()

- string comparison
- concat()

- string concatenation
- contains()

- string detection

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 94 of 179

Practical Transformation Using XSLT and XPath

Data type expressions and functions (cont.)
Chapter 7 - Data type expressions and functions

Functions related to string data types (cont.):
- default-collation()

- obtaining the default collation
- ends-with()

- establish the presence of a string
- format-number()

- adding punctuation and controlling number display
- lower-case()

- string case folding
- matches()

- regular expression matching
- normalize-space()

- normalizing extraneous spaces in a string
- normalize-unicode()

- normalizing Unicode characters in a string
- replace()

- regular expression replacement
- starts-with()

- establishing the presence of a string
- string()

- casting an argument to a string
- string-join()

- join a sequence of strings into a single string
- string-length()

- finding the length of a string
- string-to-codepoints()

- Unicode string conversion
- substring()

- returning a portion of a string
- substring-after()

- returning a portion of a string
- substring-before()

- returning a portion of a string
- tokenize()

- regular expression tokenizing
- translate()

- translating characters found in a string
- upper-case()

- string case folding

Page 95 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Data type expressions and functions (cont.)
Chapter 7 - Data type expressions and functions

Functions related to sequences:
- avg()

- return the average of members of a numerical sequence
- count()

- return a count of members of the sequence
- deep-equal()

- return an indication of two sequences being identical
- distinct-values()

- return a sequence with duplicate members removed
- empty()

- return an indication of the sequence being empty
- exactly-one()

- return an indication of the cardinality of a sequence
- exists()

- return an indication of the sequence not being empty
- index-of()

- return index pointers into a sequence
- insert-before()

- return a sequence with members inserted
- max()

- return the maximum value of the members of the numeric sequence
- min()

- return the minimum value of the members of the numeric sequence
- one-or-more()

- return an indication of the cardinality of a sequence
- remove()

- return a sequence with a member removed
- reverse()

- return the reverse of a sequence
- subsequence()

- return a portion of a sequence
- sum()

- return a sum of sequence members
- unordered()

- return an unordered sequence
- zero-or-one()

- return an indication of the cardinality of a sequence

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 96 of 179

Practical Transformation Using XSLT and XPath

Data type expressions and functions (cont.)
Chapter 7 - Data type expressions and functions

Functions related to date and time:
- adjust-date-to-timezone()

- return adjusted date
- adjust-dateTime-to-timezone()

- return adjusted date and time
- adjust-time-to-timezone()

- return adjusted time
- current-date()

- return date/time component
- current-dateTime()

- return date/time component
- current-time()

- return date/time component
- dateTime()

- return date/time component
- day-from-date()

- return date/time component
- day-from-dateTime()

- return date/time component
- days-from-duration()

- return date/time component
- format-date()

- format date string
- format-dateTime()

- format date and time string
- format-time()

- format time string
- hours-from-dateTime()

- return date/time component
- hours-from-time()

- return time component
- hours-from-duration()

- return date/time component
- implicit-timezone()

- return date/time component

Page 97 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Data type expressions and functions (cont.)
Chapter 7 - Data type expressions and functions

Functions related to date and time (cont.):
- minutes-from-dateTime()

- return date/time component
- minutes-from-duration()

- return date/time component
- minutes-from-time()

- return date/time component
- month-from-date()

- return date/time component
- month-from-dateTime()

- return date/time component
- months-from-duration()

- return date/time component
- seconds-from-dateTime()

- return date/time component
- seconds-from-duration()

- return date/time component
- seconds-from-time()

- return date/time component
- timezone-from-date()

- return date/time component
- timezone-from-time()

- return date/time component
- timezone-from-dateTime()

- return date/time component
- year-from-date()

- return date/time component
- year-from-dateTime()

- return date/time component
- years-from-duration()

- return date/time component

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 98 of 179

Practical Transformation Using XSLT and XPath

Data type expressions and functions (cont.)
Chapter 7 - Data type expressions and functions

Functions related to node data types:
- base-uri()

- obtaining a node's base URI
- data()

- obtaining a node's data
- document-uri()

- obtaining a node's document URI
- generate-id()

- establishing uniqueness in source node trees
- local-name()

- obtaining the local part of a node name
- name()

- obtaining a node name
- namespace-uri()

- obtaining the namespace URI for a node
- nilled()

- obtaining a node's nilled status
- node-name()

- obtaining a node name
- root()

- obtaining the root node of a tree
- static-base-uri()

- obtaining the static base URI

Qualified name functions:
- in-scope-prefixes()

- return a set of prefixes
- local-name-from-QName()

- return a local name
- namespace-uri-for-prefix()

- return a namespace URI
- namespace-uri-from-QName()

- return a namespace URI
- prefix-from-QName()

- return a namespace prefix
- QName()

- return a qualified name
- resolve-QName()

- resolve a qualified name

Page 99 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Data type expressions and functions (cont.)
Chapter 7 - Data type expressions and functions

Other functions:
- current()

- current node access
- encode-for-uri()

- return an encoded string
- escape-html-uri()

- return an encoded string
- id()

- accessing ID values in source node trees
- idref()

- accessing references to ID values in source node trees
- iri-to-uri()

- return an encoded string
- key()

- accessing key nodes from key tables
- regex-group()

- regular expression group retrieval
- resolve-uri()

- return an absolute URI

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 100 of 179

Practical Transformation Using XSLT and XPath

Chapter 8 - Constructing the result tree

- Introduction - Constructing result-tree nodes

Page 101 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Constructing result-tree nodes
Chapter 8 - Constructing the result tree

Result-tree nodes are used both in the result tree and in the transformation
- the creation of the result tree
- creating a result-tree fragment
- creating a temporary tree

Recall the earlier processing model diagram (page 79)
- the diagram depicts the copying of nodes from the operation tree and the source tree to

the result tree
- the operation tree nodes that are copied to the result tree are the literal result

elements
- also possible to explicitly add nodes of different types to the result tree

XSLT supports:
- direct construction of result tree nodes
- different ways to copy nodes from the source tree to the result tree
- constructing text nodes in the result tree reflecting numbering information found in the

source tree

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 102 of 179

Practical Transformation Using XSLT and XPath

Constructing result-tree nodes (cont.)
Chapter 8 - Constructing the result tree

The XSLT instructions covered in this chapter are as follows.

Instructions related to building the result tree:
- <xsl:attribute>

- instantiate an attribute node in the result tree
- <xsl:attribute-set>

- declare a set of attribute nodes for use in the result tree
- <xsl:comment>

- instantiate a comment node in the result tree
- <xsl:document>

- instantiate a document node in the result tree
- <xsl:element>

- instantiate an element node in the result tree
- <xsl:namespace>

- instantiate a namespace node in the result tree
- <xsl:processing-instruction>

- instantiate a processing instruction node in the result tree
- <xsl:text>

- instantiate a text node in the result tree
- <xsl:copy>

- instantiate a copy of the current node in the result tree
- <xsl:copy-of>

- instantiate a complete copy of a specified node in the result tree
- <xsl:number>

- add a string to the result tree representing the position of the current node

Page 103 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Chapter 9 - Sorting and grouping

- Introduction - Sorting and grouping

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 104 of 179

Practical Transformation Using XSLT and XPath

Sorting and grouping
Chapter 9 - Sorting and grouping

This chapter covers how to arrange the construction of results in ordered fashion.

Sorting

An important part of many transformations is the need to re-order the information in source
tree nodes into a sorted order for processing into result tree nodes:

- designed for sorting the context list using multiple criteria
- each criterion is a single value calculated for each node
- value may be simple node value or may be any XPath evaluation relative to node

- the source tree is untouched during sorting
- items being sorted are selected from the tree and the selection itself is sorted, not

the tree
- sorting can be language based, numeric based, type-based or based on custom semantics
- the context list can be any arbitrary sequence
- multiple keys are used to sort clumps of equal values by other values

- e.g. a secondary key is used when the primary key finds clumps of equal values
- the secondary key is only applied to the clumped values, maintaining the set

of clumped values in the same position of the primary sort
- e.g. a tertiary key is used when the secondary key finds clumps of equal values

- the tertiary key is only applied to the clumped values after the secondary sort,
maintaining the set of clumped values in the same position of the secondary
sort, in the same position of the primary sort

- leftover clumped values after all keys are accommodated are left in context list
sequence order

Page 105 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Sorting and grouping (cont.)
Chapter 9 - Sorting and grouping

Grouping and uniqueness

Another important part of many transformations is the need to infer structure from the results
of sorting information, which is a process often called "grouping":

- collecting information while separating and grouping it by common values
- i.e. grouping the clumps under the value that created the clump
- selecting a single piece of composite information obtains all components
- a simple sort doesn't partition the composite information into constituent pieces

- specific application of the generalized problem of finding unique values from a set
- often necessary to find unique values in a set of values
- unique values make up the group headings

- no explicit support for grouping under duplicate source tree node values
- explicit support for grouping under duplicate source tree node values

This chapter covers three techniques of using XSLT 1.0 to group constructs when processing:
- using reverse-document-order axes
- the "Muenchian Method" of using <xsl:key>
- using variables

This chapter also covers the built-in XSLT 2.0 facility for grouping
- group-adjacent, group-by, group-starting-with and group-ending-with

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 106 of 179

Practical Transformation Using XSLT and XPath

Sorting and grouping (cont.)
Chapter 9 - Sorting and grouping

The XSLT instructions covered in this chapter are:
- <xsl:sort>

- specify a criterion with which to sort a set of nodes
- <xsl:perform-sort>

- specify the criteria with which to sort a sequence of items
- <xsl:for-each-group>

- act on a set of items according to grouping criteria

The XSLT functions covered in this chapter are:
- current-grouping-key()

- returns the value by which members of the current set of grouped items are grouped
- current-group()

- returns the members of the current set of grouped items

Page 107 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Annex A - XML to HTML transformation

- Introduction - Historical web standards for presentation

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 108 of 179

Practical Transformation Using XSLT and XPath

Historical web standards for presentation
Annex A - XML to HTML transformation

Recognizing that the purpose of many XSLT transformations will be to render information
over the World Wide Web, it is important to understand what different user-agent technologies
are currently available to be used:

- user agents do not inherently understand the presentation semantics associated with our
custom XML vocabularies

- can translate instances of our vocabularies into instances of a user agent vocabulary (e.g.
HTML)

- can annotate instances of our vocabularies with formatting properties recognized by a
user agent (e.g. CSS)

Hypertext Markup Language (HTML)
- a language for sharing text and graphics
- a hyperlinking facility for relating information

Cascading Stylesheets (CSS)
- getting away from the built-in user agent rendering semantics
- describes document tree ornamentation with formatting properties

User Agent Screen Painting
- direct control of the user agent canvas

Extensible Hypertext Markup Language (XHTML)
- modularization of HTML
- reformulating HTML as XML
- support of arbitrary XML in HTML

This annex overviews considerations for producing different flavors of HTML to support
different user agents. As well, stylesheet fragments illustrating common requirements to mark
up images and links are described.

Issues of compatibility between different user agent implementations and recommended
markup practices are not reviewed in this material. A discussion of such issues can be found
at http://www.w3.org/TR/xhtml1/#guidelines.

Page 109 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Annex B - XSL formatting semantics introduction

- Introduction - Formatting objectives

Outcomes:

- awareness of the formatting objectives of the XSL development committee

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 110 of 179

Practical Transformation Using XSLT and XPath

Formatting objectives
Annex B - XSL formatting semantics introduction

The Extensible Stylesheet Language (XSL)

A catalogue of formatting objects and flow objects (each with properties controlling behavior)
for rendering information to multiple media.

- addresses basic word-processing-level pagination
- semantic model for formatting

- expressed in terms of which XSL concepts can be described
- described as a vocabulary that can be serialized as XML markup

Sophisticated pagination and support for layout-driven documents
- DSSSL

- Document Style Semantics and Specification Language ISO-10179
- W3C Common Formatting Model

- effort initially based on CSS
- vocabulary accommodates both heritages

- some constructs can be specified different ways with different names
- writing-direction-independent (absolute) and writing-direction-dependent (writing

mode relative) properties

Well-defined constructs
- express formatting intent

- according to the XSL formatting model
- available to the stylesheet writer

- for specification of a layout using the XSL formatting vocabulary
- managed and interpreted by the formatter

- that process responsible for rendering
- in response to a description of the layout

Page 111 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Formatting objectives (cont.)
Annex B - XSL formatting semantics introduction

Effecting the formatting of XML with XSL formatting semantics
- transformation stylesheet

- it is the stylesheet writer's responsibility to write an XSLT transformation of the
XML source file into a result node tree composed entirely of formatting and flow
objects using the XSL vocabulary

- same architecture as when producing HTML from XML
- an XSL-FO engine interprets an XSL-FO instance just as a browser interprets

HTML
- semantics interpretation

- an XSL processor implementing XSL formatting semantics recognizes the
vocabulary and renders the result

- unlike CSS
- the user's vocabulary is not supplemented with formatting properties

Intermediate result of rendering
- the XSL processor may, but need not, emit the result node tree as XML markup

- formatting and flow objects are XML elements
- properties are attribute/value pairs specified in the XML elements

- very useful for debugging stylesheets
- recall the XSL-FO engine incorporating XSLT (page 39)

This chapter briefly introduces concepts and basic constructs used in the XSL-FO 1.0
Recommendation, without going into the details of the vocabulary or markup required to
support these concepts. The topic of formatting objects and their semantics and markup
warrants an entire tutorial on its own and is thus separate from this tutorial.

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 112 of 179

Practical Transformation Using XSLT and XPath

Annex C - Instruction, function and grammar
summaries

- Introduction - Quick summaries
- Section 1 - Vocabulary, functions and grammars XSLT 1.0 and XPath 1.0
- Section 2 - Vocabulary, functions and grammars XSLT 2.0 and XPath 2.0

Page 113 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Quick summaries
Annex C - Instruction, function and grammar summaries

This annex lists alphabetized references to the components of the specifications. Each entry
notes the chapter in this book where the construct is primarily described.

The specifications are rigorous references to all of the facilities and functions:

XSLT 1.0/XPath 1.0:
- http://www.w3.org/TR/1999/REC-xslt-19991116
- http://www.w3.org/TR/1999/REC-xpath-19991116

XSLT 2.0/XPath 2.0/XQuery 1.0
- http://www.w3.org/TR/2007/REC-xslt20-20070123/
- http://www.w3.org/TR/2007/REC-xpath20-20070123/
- http://www.w3.org/TR/2007/REC-xpath-datamodel-20070123/
- http://www.w3.org/TR/2007/REC-xpath-functions-20070123/
- http://www.w3.org/TR/2007/REC-xslt-xquery-serialization-20070123/
- http://www.w3.org/TR/2007/REC-xquery-20070123/
- http://www.w3.org/TR/2007/REC-xquery-semantics-20070123/
- http://www.w3.org/TR/2007/REC-xqueryx-20070123

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 114 of 179

Practical Transformation Using XSLT and XPath

XSLT 1.0 element summary
Annex C - Instruction, function and grammar summaries
Section 1 - Vocabulary, functions and grammars XSLT 1.0 and XPath 1.0

All elements in the XSLT vocabulary in alphabetical order follow. Note that the Kleene
operators '?', '*' and '+' (respectively zero or one, zero or more, and one or more) are used to
denote the cardinality of attributes and contained constructs. The content model operators ','
and '|' (respectively sequence and alternation) are also used. The brace brackets '{' and '}'
denote the use of an attribute value template. This information is mechanically derived from
the XSLT 1.0 Recommendation.

apply-imports (instruction) - Why modularize logical and physical structures? (page 88)
- XSLT 1.0 5.6 Overriding Template Rules
- 01 <xsl:apply-imports/>

apply-templates (instruction) - A predictable behavior for processors (page 80)
- XSLT 1.0 5.4 Applying Template Rules
- 01 <xsl:apply-templates mode="qname"?

02 select="node-set-expression"?>
03 (<xsl:sort>|<xsl:with-param>)*
04 </xsl:apply-templates>

attribute (instruction) - Constructing result-tree nodes (page 103)
- XSLT 1.0 7.1 Creating Elements and Attributes
- 01 <xsl:attribute name="qname|{string-expression}"

02 namespace="uri-reference|{string-expression}"?>
03 template
04 </xsl:attribute>

attribute-set (top level element) - Constructing result-tree nodes (page 103)
- XSLT 1.0 7.1 Creating Elements and Attributes
- 01 <xsl:attribute-set name="qname"

02 use-attribute-sets="qnames"?>
03 <xsl:attribute>*
04 </xsl:attribute-set>

call-template (instruction) - Why modularize logical and physical structures? (page 88)
- XSLT 1.0 6 Named Templates
- 01 <xsl:call-template name="qname">

02 <xsl:with-param>*
03 </xsl:call-template>

choose (instruction) - A predictable behavior for processors (page 80)
- XSLT 1.0 9.2 Conditional Processing with xsl:choose
- 01 <xsl:choose>

02 (<xsl:when>+,<xsl:otherwise>?)
03 </xsl:choose>

comment (instruction) - Constructing result-tree nodes (page 103)
- XSLT 1.0 7.4 Creating Comments
- 01 <xsl:comment>

02 template
03 </xsl:comment>

Page 115 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
copy (instruction) - Constructing result-tree nodes (page 103)

- XSLT 1.0 7.5 Copying
- 01 <xsl:copy use-attribute-sets="qnames"?>

02 template
03 </xsl:copy>

copy-of (instruction) - Constructing result-tree nodes (page 103)
- XSLT 1.0 11.3 Using Values of Variables and Parameters with xsl:copy-of
- 01 <xsl:copy-of select="expression"/>

decimal-format (top level element) - Data type expressions and functions (page 93)
- XSLT 1.0 12.3 Number Formatting
- 01 <xsl:decimal-format decimal-separator="char"?

02 digit="char"?
03 grouping-separator="char"?
04 infinity="string"?
05 minus-sign="char"?
06 name="qname"?
07 NaN="string"?
08 pattern-separator="char"?
09 per-mille="char"?
10 percent="char"?
11 zero-digit="char"?/>

element (instruction) - Constructing result-tree nodes (page 103)
- XSLT 1.0 7.1 Creating Elements and Attributes
- 01 <xsl:element name="qname|{string-expression}"

02 namespace="uri-reference|{string-expression}"?
03 use-attribute-sets="qnames"?>
04 template
05 </xsl:element>

fallback (instruction) - Why modularize logical and physical structures? (page 88)
- XSLT 1.0 15 Fallback
- 01 <xsl:fallback>

02 template
03 </xsl:fallback>

for-each (instruction) - A predictable behavior for processors (page 80)
- XSLT 1.0 8 Repetition
- 01 <xsl:for-each select="node-set-expression">

02 (<xsl:sort>*,template)
03 </xsl:for-each>

if (instruction) - A predictable behavior for processors (page 80)
- XSLT 1.0 9.1 Conditional Processing with xsl:if
- 01 <xsl:if test="boolean-expression">

02 template
03 </xsl:if>

import - Why modularize logical and physical structures? (page 88)
- XSLT 1.0 2.6 Combining Stylesheets
- 01 <xsl:import href="uri-reference"/>

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 116 of 179

Practical Transformation Using XSLT and XPath

include (top level element) - Why modularize logical and physical structures? (page 88)
- XSLT 1.0 2.6 Combining Stylesheets
- 01 <xsl:include href="uri-reference"/>

key (top level element) - Data type expressions and functions (page 93)
- XSLT 1.0 12.2 Keys
- 01 <xsl:key match="pattern"

02 name="qname"
03 use="expression"/>

message (instruction) - The transformation environment (page 83)
- XSLT 1.0 13 Messages
- 01 <xsl:message terminate="yes|no"?>

02 template
03 </xsl:message>

namespace-alias (top level element) - The transformation environment (page 83)
- XSLT 1.0 7.1 Creating Elements and Attributes
- 01 <xsl:namespace-alias result-prefix="prefix|#default"

02 stylesheet-prefix="prefix|#default"/>

number (instruction) - Constructing result-tree nodes (page 103)
- XSLT 1.0 7.7 Numbering
- 01 <xsl:number count="pattern"?

02 format="string|{string-expression}"?
03 from="pattern"?
04 grouping-separator="char|{string-expression}"?
05 grouping-size="number|{string-expression}"?
06 lang="nmtoken|{string-expression}"?
07

letter-value="alphabetic|traditional|{string-expression}"?
08 level="single|multiple|any"?
09 value="number-expression"?/>

otherwise - A predictable behavior for processors (page 80)
- XSLT 1.0 9.2 Conditional Processing with xsl:choose
- 01 <xsl:otherwise>

02 template
03 </xsl:otherwise>

output (top level element) - The transformation environment (page 83)
- XSLT 1.0 16 Output
- 01 <xsl:output cdata-section-elements="qnames"?

02 doctype-public="string"?
03 doctype-system="string"?
04 encoding="string"?
05 indent="yes|no"?
06 media-type="string"?
07 method="xml|html|text|qname-but-not-ncname"?
08 omit-xml-declaration="yes|no"?
09 standalone="yes|no"?
10 version="nmtoken"?/>

Page 117 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
param (top level element) - Why modularize logical and physical structures? (page 88)

- XSLT 1.0 11 Variables and Parameters
- 01 <xsl:param name="qname"

02 select="expression"?>
03 template
04 </xsl:param>

preserve-space (top level element) - XPath data model (page 76)
- XSLT 1.0 3.4 Whitespace Stripping
- 01 <xsl:preserve-space elements="tokens"/>

processing-instruction (instruction) - Constructing result-tree nodes (page 103)
- XSLT 1.0 7.3 Creating Processing Instructions
- 01 <xsl:processing-instruction name="ncname|{string-expression}">

02 template
03 </xsl:processing-instruction>

sort - Sorting and grouping (page 107)
- XSLT 1.0 10 Sorting
- 01 <xsl:sort case-order="upper-first|lower-first|{string-expression}"?

02

data-type="text|number|qname-but-not-ncname|{string-expression}"?
03 lang="nmtoken|{string-expression}"?
04 order="ascending|descending|{string-expression}"?
05 select="string-expression"?/>

strip-space (top level element) - XPath data model (page 76)
- XSLT 1.0 3.4 Whitespace Stripping
- 01 <xsl:strip-space elements="tokens"/>

stylesheet - The transformation environment (page 83)
- XSLT 1.0 2.2 Stylesheet Element
- 01 <xsl:stylesheet version="number"

02 exclude-result-prefixes="tokens"?
03 extension-element-prefixes="tokens"?
04 id="id"?>
05 (<xsl:import>*,top-level-elements)
06 </xsl:stylesheet>

template (top level element) - A predictable behavior for processors (page 80)
- XSLT 1.0 5.3 Defining Template Rules
- 01 <xsl:template match="pattern"?

02 mode="qname"?
03 name="qname"?
04 priority="number"?>
05 (<xsl:param>*,template)
06 </xsl:template>

text (instruction) - Constructing result-tree nodes (page 103)
- XSLT 1.0 7.2 Creating Text
- 01 <xsl:text disable-output-escaping="yes|no"?>

02 #PCDATA
03 </xsl:text>

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 118 of 179

Practical Transformation Using XSLT and XPath

transform - The transformation environment (page 83)
- XSLT 1.0 2.2 Stylesheet Element
- 01 <xsl:transform version="number"

02 exclude-result-prefixes="tokens"?
03 extension-element-prefixes="tokens"?
04 id="id"?>
05 (<xsl:import>*,top-level-elements)
06 </xsl:transform>

value-of (instruction) - A predictable behavior for processors (page 80)
- XSLT 1.0 7.6 Computing Generated Text
- 01 <xsl:value-of select="string-expression"

02 disable-output-escaping="yes|no"?/>

variable (top level element) - Why modularize logical and physical structures? (page 88)
- XSLT 1.0 11 Variables and Parameters
- 01 <xsl:variable name="qname"

02 select="expression"?>
03 template
04 </xsl:variable>

when - A predictable behavior for processors (page 80)
- XSLT 1.0 9.2 Conditional Processing with xsl:choose
- 01 <xsl:when test="boolean-expression">

02 template
03 </xsl:when>

with-param - Why modularize logical and physical structures? (page 88)
- XSLT 1.0 11.6 Passing Parameters to Templates
- 01 <xsl:with-param name="qname"

02 select="expression"?>
03 template
04 </xsl:with-param>

Page 119 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
XPath 1.0 and XSLT 1.0 function summary
Annex C - Instruction, function and grammar summaries
Section 1 - Vocabulary, functions and grammars XSLT 1.0 and XPath 1.0

All functions of both XPath 1.0 and XSLT 2.0 in alphabetical order follow. This information
is mechanically derived from the XPath 1.0 and XSLT 1.0 Recommendations.

boolean - Data type expressions and functions (page 94)
- XPath 1.0 4.3 Boolean Functions
- boolean boolean(object)

ceiling - Data type expressions and functions (page 94)
- XPath 1.0 4.4 Number Functions
- number ceiling(number)

concat - Data type expressions and functions (page 94)
- XPath 1.0 4.2 String Functions
- string concat(string, string, string*)

contains - Data type expressions and functions (page 94)
- XPath 1.0 4.2 String Functions
- boolean contains(string, string)

count - Data type expressions and functions (page 96)
- XPath 1.0 4.1 Node Set Functions
- number count(node-set)

current - Data type expressions and functions (page 100)
- XSLT 1.0 12.4 Miscellaneous Additional Functions
- node-set current()

document - Why modularize logical and physical structures? (page 89)
- XSLT 1.0 12.1 Multiple Source Documents
- node-set document(object, node-set?)

element-available - Why modularize logical and physical structures? (page 89)
- XSLT 1.0 15 Fallback
- boolean element-available(string)

false - Data type expressions and functions (page 94)
- XPath 1.0 4.3 Boolean Functions
- boolean false()

floor - Data type expressions and functions (page 94)
- XPath 1.0 4.4 Number Functions
- number floor(number)

format-number - Data type expressions and functions (page 95)
- XSLT 1.0 12.3 Number Formatting
- string format-number(number, string, string?)

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 120 of 179

Practical Transformation Using XSLT and XPath

function-available - Why modularize logical and physical structures? (page 89)
- XSLT 1.0 15 Fallback
- boolean function-available(string)

generate-id - Data type expressions and functions (page 99)
- XSLT 1.0 12.4 Miscellaneous Additional Functions
- string generate-id(node-set?)

id - Data type expressions and functions (page 100)
- XPath 1.0 4.1 Node Set Functions
- node-set id(object)

key - Data type expressions and functions (page 100)
- XSLT 1.0 12.2 Keys
- node-set key(string, object)

lang - Data type expressions and functions (page 94)
- XPath 1.0 4.3 Boolean Functions
- boolean lang(string)

last - XPath data model (page 76)
- XPath 1.0 4.1 Node Set Functions
- number last()

local-name - Data type expressions and functions (page 99)
- XPath 1.0 4.1 Node Set Functions
- string local-name(node-set?)

name - Data type expressions and functions (page 99)
- XPath 1.0 4.1 Node Set Functions
- string name(node-set?)

namespace-uri - Data type expressions and functions (page 99)
- XPath 1.0 4.1 Node Set Functions
- string namespace-uri(node-set?)

normalize-space - Data type expressions and functions (page 95)
- XPath 1.0 4.2 String Functions
- string normalize-space(string?)

not - Data type expressions and functions (page 94)
- XPath 1.0 4.3 Boolean Functions
- boolean not(boolean)

number - Data type expressions and functions (page 94)
- XPath 1.0 4.4 Number Functions
- number number(object?)

position - XPath data model (page 76)
- XPath 1.0 4.1 Node Set Functions
- number position()

Page 121 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
round - Data type expressions and functions (page 94)

- XPath 1.0 4.4 Number Functions
- number round(number)

starts-with - Data type expressions and functions (page 95)
- XPath 1.0 4.2 String Functions
- boolean starts-with(string, string)

string - Data type expressions and functions (page 95)
- XPath 1.0 4.2 String Functions
- string string(object?)

string-length - Data type expressions and functions (page 95)
- XPath 1.0 4.2 String Functions
- number string-length(string?)

substring - Data type expressions and functions (page 95)
- XPath 1.0 4.2 String Functions
- string substring(string, number, number?)

substring-after - Data type expressions and functions (page 95)
- XPath 1.0 4.2 String Functions
- string substring-after(string, string)

substring-before - Data type expressions and functions (page 95)
- XPath 1.0 4.2 String Functions
- string substring-before(string, string)

sum - Data type expressions and functions (page 96)
- XPath 1.0 4.4 Number Functions
- number sum(node-set)

system-property - The transformation environment (page 83)
- XSLT 1.0 12.4 Miscellaneous Additional Functions
- object system-property(string)

translate - Data type expressions and functions (page 95)
- XPath 1.0 4.2 String Functions
- string translate(string, string, string)

true - Data type expressions and functions (page 94)
- XPath 1.0 4.3 Boolean Functions
- boolean true()

unparsed-entity-uri - Why modularize logical and physical structures? (page 89)
- XSLT 1.0 12.4 Miscellaneous Additional Functions
- string unparsed-entity-uri(string)

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 122 of 179

Practical Transformation Using XSLT and XPath

XPath 1.0 grammar productions
Annex C - Instruction, function and grammar summaries
Section 1 - Vocabulary, functions and grammars XSLT 1.0 and XPath 1.0

Location Paths (2)
RelativeLocationPath[3]
| AbsoluteLocationPath[2]

 ::= [1] LocationPath

'/' RelativeLocationPath[3]?
| AbbreviatedAbsoluteLocationPath[10]

 ::= [2] AbsoluteLocationPath

Step[4]
| RelativeLocationPath[3] '/' Step[4]
| AbbreviatedRelativeLocationPath[11]

 ::= [3] RelativeLocationPath

Location Steps (2.1)
AxisSpecifier[5] NodeTest[7] Predicate[8]*
| AbbreviatedStep[12]

 ::= [4] Step

AxisName[6] '::'
| AbbreviatedAxisSpecifier[13]

 ::= [5] AxisSpecifier

Axes (2.2)
'ancestor'
| 'ancestor-or-self'
| 'attribute'
| 'child'
| 'descendant'
| 'descendant-or-self'
| 'following'
| 'following-sibling'
| 'namespace'
| 'parent'
| 'preceding'
| 'preceding-sibling'
| 'self'

 ::= [6] AxisName

Node Tests (2.3)
NameTest[37]
| NodeType[38] '(' ')'
| 'processing-instruction' '(' Literal[29] ')'

 ::= [7] NodeTest

Predicates (2.4)
'[' PredicateExpr[9] ']' ::= [8] Predicate

Expr[14] ::= [9] PredicateExpr

Abbreviated Syntax (2.5)
'//' RelativeLocationPath[3] ::= [10] AbbreviatedAbsoluteLocationPath
RelativeLocationPath[3] '//' Step[4] ::= [11] AbbreviatedRelativeLocationPath

'.'
| '..'

 ::= [12] AbbreviatedStep

'@'? ::= [13] AbbreviatedAxisSpecifier

Expressions (3)

Page 123 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Basics (3.1)

OrExpr[21] ::= [14] Expr
VariableReference[36]
| '(' Expr[14] ')'
| Literal[29]
| Number[30]
| FunctionCall[16]

 ::= [15] PrimaryExpr

Function Calls (3.2)
FunctionName[35] '(' (Argument[17] (',' Argument[17]
)*)? ')'

 ::= [16] FunctionCall

Expr[14] ::= [17] Argument

Node-sets (3.3)
PathExpr[19]
| UnionExpr[18] '|' PathExpr[19]

 ::= [18] UnionExpr

LocationPath[1]
| FilterExpr[20]
| FilterExpr[20] '/' RelativeLocationPath[3]
| FilterExpr[20] '//' RelativeLocationPath[3]

 ::= [19] PathExpr

PrimaryExpr[15]
| FilterExpr[20] Predicate[8]

 ::= [20] FilterExpr

Booleans (3.4)
AndExpr[22]
| OrExpr[21] 'or' AndExpr[22]

 ::= [21] OrExpr

EqualityExpr[23]
| AndExpr[22] 'and' EqualityExpr[23]

 ::= [22] AndExpr

RelationalExpr[24]
| EqualityExpr[23] '=' RelationalExpr[24]
| EqualityExpr[23] '!=' RelationalExpr[24]

 ::= [23] EqualityExpr

AdditiveExpr[25]
| RelationalExpr[24] '<' AdditiveExpr[25]
| RelationalExpr[24] '>' AdditiveExpr[25]
| RelationalExpr[24] '<=' AdditiveExpr[25]
| RelationalExpr[24] '>=' AdditiveExpr[25]

 ::= [24] RelationalExpr

Numbers (3.5)
MultiplicativeExpr[26]
| AdditiveExpr[25] '+' MultiplicativeExpr[26]
| AdditiveExpr[25] '-' MultiplicativeExpr[26]

 ::= [25] AdditiveExpr

UnaryExpr[27]
| MultiplicativeExpr[26] MultiplyOperator[34]
UnaryExpr[27]
| MultiplicativeExpr[26] 'div' UnaryExpr[27]
| MultiplicativeExpr[26] 'mod' UnaryExpr[27]

 ::= [26] MultiplicativeExpr

UnionExpr[18]
| '-' UnaryExpr[27]

 ::= [27] UnaryExpr

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 124 of 179

Practical Transformation Using XSLT and XPath

Lexical Structure (3.7)
'(' | ')' | '[' | ']' | '.' | '..' | '@' | ',' | '::'
| NameTest[37]
| NodeType[38]
| Operator[32]
| FunctionName[35]
| AxisName[6]
| Literal[29]
| Number[30]
| VariableReference[36]

 ::= [28] ExprToken

'"' [^"]* '"'
| "'" [^']* "'"

 ::= [29] Literal

Digits[31] ('.' Digits[31]?)?
| '.' Digits[31]

 ::= [30] Number

[0-9]+ ::= [31] Digits
OperatorName[33]
| MultiplyOperator[34]
| '/' | '//' | '|' | '+' | '-' | '=' | '!=' | '<' | '<='
| '>' | '>='

 ::= [32] Operator

'and' | 'or' | 'mod' | 'div' ::= [33] OperatorName
'*' ::= [34] MultiplyOperator

QName[XML-Names-6] - NodeType[38] ::= [35] FunctionName
'$' QName[XML-Names-6] ::= [36] VariableReference

'*'
| NCName[XML-Names-4] ':' '*'
| QName[XML-Names-6]

 ::= [37] NameTest

'comment'
| 'text'
| 'processing-instruction'
| 'node'

 ::= [38] NodeType

S[XML-3] ::= [39] ExprWhitespace

Page 125 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
XSLT 1.0 grammar productions
Annex C - Instruction, function and grammar summaries
Section 1 - Vocabulary, functions and grammars XSLT 1.0 and XPath 1.0

Template Rules (5)

Patterns (5.2)
LocationPathPattern[2]
| Pattern[1] '|' LocationPathPattern[2]

 ::= [1] Pattern

'/' RelativePathPattern[4]?
| IdKeyPattern[3] (('/' | '//')
RelativePathPattern[4])?
| '//'? RelativePathPattern[4]

 ::= [2] LocationPathPattern

'id' '(' Literal[XPath-1.0-29] ')'
| 'key' '(' Literal[XPath-1.0-29] ',' Literal[XPath-1.0-29]
')'

 ::= [3] IdKeyPattern

StepPattern[5]
| RelativePathPattern[4] '/' StepPattern[5]
| RelativePathPattern[4] '//' StepPattern[5]

 ::= [4] RelativePathPattern

ChildOrAttributeAxisSpecifier[6] NodeTest[XPath-1.0-7]
Predicate[XPath-1.0-8]*

 ::= [5] StepPattern

AbbreviatedAxisSpecifier[XPath-1.0-13]
| ('child' | 'attribute') '::'

 ::= [6] ChildOrAttributeAxisSpecifier

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 126 of 179

Practical Transformation Using XSLT and XPath

XSLT 2.0 element summary
Annex C - Instruction, function and grammar summaries
Section 2 - Vocabulary, functions and grammars XSLT 2.0 and XPath 2.0

All elements in the XSLT vocabulary in alphabetical order follow. Note that the Kleene
operators '?', '*' and '+' (respectively zero or one, zero or more, and one or more) are used to
denote the cardinality of attributes and contained constructs. The content model operators ','
and '|' (respectively sequence and alternation) are also used. The brace brackets '{' and '}'
denote the use of an attribute value template. This information is mechanically derived from
the XSLT 1.0 Recommendation.

analyze-string - Data type expressions and functions (page 93)
- XSLT 2.0 - 15.1 The xsl:analyze-string instruction
- <!-- Category: instruction -->
<xsl:analyze-string
 select = expression
 regex = { string }
 flags? = { string }>
 <!-- Content: (xsl:matching-substring?, xsl:non-matching-substring?,
xsl:fallback*) -->
</xsl:analyze-string>

apply-imports - Why modularize logical and physical structures? (page 88)
- XSLT 2.0 - 6.7 Overriding Template Rules
- <!-- Category: instruction -->
<xsl:apply-imports>
 <!-- Content: xsl:with-param* -->
</xsl:apply-imports>

apply-templates - A predictable behavior for processors (page 80)
- XSLT 2.0 - 6.3 Applying Template Rules
- <!-- Category: instruction -->
<xsl:apply-templates
 select? = expression
 mode? = token>
 <!-- Content: (xsl:sort | xsl:with-param)* -->
</xsl:apply-templates>

attribute - Constructing result-tree nodes (page 103)
- XSLT 2.0 - 11.3 Creating Attribute Nodes Using xsl:attribute
- <!-- Category: instruction -->
<xsl:attribute
 name = { qname }
 namespace? = { uri-reference }
 select? = expression
 separator? = { string }
 type? = qname
 validation? = "strict" | "lax" | "preserve" | "strip">
 <!-- Content: sequence-constructor -->
</xsl:attribute>

Page 127 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
attribute-set - Constructing result-tree nodes (page 103)

- XSLT 2.0 - 10.2 Named Attribute Sets
- <!-- Category: declaration -->
<xsl:attribute-set
 name = qname
 use-attribute-sets? = qnames>
 <!-- Content: xsl:attribute* -->
</xsl:attribute-set>

call-template - Why modularize logical and physical structures? (page 88)
- XSLT 2.0 - 10.1 Named Templates
- <!-- Category: instruction -->
<xsl:call-template
 name = qname>
 <!-- Content: xsl:with-param* -->
</xsl:call-template>

character-map - The transformation environment (page 83)
- XSLT 2.0 - 20.1 Character Maps
- <!-- Category: declaration -->
<xsl:character-map
 name = qname
 use-character-maps? = qnames>
 <!-- Content: (xsl:output-character*) -->
</xsl:character-map>

choose - A predictable behavior for processors (page 80)
- XSLT 2.0 - 8.2 Conditional Processing with xsl:choose
- <!-- Category: instruction -->
<xsl:choose>
 <!-- Content: (xsl:when+, xsl:otherwise?) -->
</xsl:choose>

comment - Constructing result-tree nodes (page 103)
- XSLT 2.0 - 11.8 Creating Comments
- <!-- Category: instruction -->
<xsl:comment
 select? = expression>
 <!-- Content: sequence-constructor -->
</xsl:comment>

copy - Constructing result-tree nodes (page 103)
- XSLT 2.0 - 11.9.1 Shallow Copy
- <!-- Category: instruction -->
<xsl:copy
 copy-namespaces? = "yes" | "no"
 inherit-namespaces? = "yes" | "no"
 use-attribute-sets? = qnames
 type? = qname
 validation? = "strict" | "lax" | "preserve" | "strip">
 <!-- Content: sequence-constructor -->
</xsl:copy>

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 128 of 179

Practical Transformation Using XSLT and XPath

copy-of - Constructing result-tree nodes (page 103)
- XSLT 2.0 - 11.9.2 Deep Copy
- <!-- Category: instruction -->
<xsl:copy-of
 select = expression
 copy-namespaces? = "yes" | "no"
 type? = qname
 validation? = "strict" | "lax" | "preserve" | "strip" />

decimal-format - Data type expressions and functions (page 93)
- XSLT 2.0 - 16.4.1 Defining a Decimal Format
- <!-- Category: declaration -->
<xsl:decimal-format
 name? = qname
 decimal-separator? = char
 grouping-separator? = char
 infinity? = string
 minus-sign? = char
 NaN? = string
 percent? = char
 per-mille? = char
 zero-digit? = char
 digit? = char
 pattern-separator? = char />

document - Constructing result-tree nodes (page 103)
- XSLT 2.0 - 11.5 Creating Document Nodes
- <!-- Category: instruction -->
<xsl:document
 validation? = "strict" | "lax" | "preserve" | "strip"
 type? = qname>
 <!-- Content: sequence-constructor -->
</xsl:document>

element - Constructing result-tree nodes (page 103)
- XSLT 2.0 - 11.2 Creating Element Nodes Using xsl:element
- <!-- Category: instruction -->
<xsl:element
 name = { qname }
 namespace? = { uri-reference }
 inherit-namespaces? = "yes" | "no"
 use-attribute-sets? = qnames
 type? = qname
 validation? = "strict" | "lax" | "preserve" | "strip">
 <!-- Content: sequence-constructor -->
</xsl:element>

fallback - Why modularize logical and physical structures? (page 88)
- XSLT 2.0 - 18.2.3 Fallback
- <!-- Category: instruction -->
<xsl:fallback>
 <!-- Content: sequence-constructor -->
</xsl:fallback>

Page 129 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
for-each - A predictable behavior for processors (page 80)

- XSLT 2.0 - 7 Repetition
- <!-- Category: instruction -->
<xsl:for-each
 select = expression>
 <!-- Content: (xsl:sort*, sequence-constructor) -->
</xsl:for-each>

for-each-group - Sorting and grouping (page 107)
- XSLT 2.0 - 14.3 The xsl:for-each-group Element
- <!-- Category: instruction -->
<xsl:for-each-group
 select = expression
 group-by? = expression
 group-adjacent? = expression
 group-starting-with? = pattern
 group-ending-with? = pattern
 collation? = { uri }>
 <!-- Content: (xsl:sort*, sequence-constructor) -->
</xsl:for-each-group>

function - Why modularize logical and physical structures? (page 88)
- XSLT 2.0 - 10.3 Stylesheet Functions
- <!-- Category: declaration -->
<xsl:function
 name = qname
 as? = sequence-type
 override? = "yes" | "no">
 <!-- Content: (xsl:param*, sequence-constructor) -->
</xsl:function>

if - A predictable behavior for processors (page 80)
- XSLT 2.0 - 8.1 Conditional Processing with xsl:if
- <!-- Category: instruction -->
<xsl:if
 test = expression>
 <!-- Content: sequence-constructor -->
</xsl:if>

import - Why modularize logical and physical structures? (page 88)
- XSLT 2.0 - 3.10.3 Stylesheet Import
- <!-- Category: declaration -->
<xsl:import
 href = uri-reference />

import-schema - The transformation environment (page 83)
- XSLT 2.0 - 3.14 Importing Schema Components
- <!-- Category: declaration -->
<xsl:import-schema
 namespace? = uri-reference
 schema-location? = uri-reference>
 <!-- Content: xs:schema? -->
</xsl:import-schema>

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 130 of 179

Practical Transformation Using XSLT and XPath

include - Why modularize logical and physical structures? (page 88)
- XSLT 2.0 - 3.10.2 Stylesheet Inclusion
- <!-- Category: declaration -->
<xsl:include
 href = uri-reference />

key - Data type expressions and functions (page 93)
- XSLT 2.0 - 16.3.1 The xsl:key Declaration
- <!-- Category: declaration -->
<xsl:key
 name = qname
 match = pattern
 use? = expression
 collation? = uri>
 <!-- Content: sequence-constructor -->
</xsl:key>

matching-substring - Data type expressions and functions (page 93)
- XSLT 2.0 - 15.1 The xsl:analyze-string instruction
- <xsl:matching-substring>
 <!-- Content: sequence-constructor -->
</xsl:matching-substring>

message - The transformation environment (page 83)
- XSLT 2.0 - 17 Messages
- <!-- Category: instruction -->
<xsl:message
 select? = expression
 terminate? = { "yes" | "no" }>
 <!-- Content: sequence-constructor -->
</xsl:message>

namespace - Constructing result-tree nodes (page 103)
- XSLT 2.0 - 11.7 Creating Namespace Nodes
- <!-- Category: instruction -->
<xsl:namespace
 name = { ncname }
 select? = expression>
 <!-- Content: sequence-constructor -->
</xsl:namespace>

namespace-alias - The transformation environment (page 83)
- XSLT 2.0 - 11.1.4 Namespace Aliasing
- <!-- Category: declaration -->
<xsl:namespace-alias
 stylesheet-prefix = prefix | "#default"
 result-prefix = prefix | "#default" />

next-match - Why modularize logical and physical structures? (page 88)
- XSLT 2.0 - 6.7 Overriding Template Rules
- <!-- Category: instruction -->
<xsl:next-match>
 <!-- Content: (xsl:with-param | xsl:fallback)* -->
</xsl:next-match>

Page 131 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
non-matching-substring - Data type expressions and functions (page 93)

- XSLT 2.0 - 15.1 The xsl:analyze-string instruction
- <xsl:non-matching-substring>
 <!-- Content: sequence-constructor -->
</xsl:non-matching-substring>

number - Constructing result-tree nodes (page 103)
- XSLT 2.0 - 12 Numbering
- <!-- Category: instruction -->
<xsl:number
 value? = expression
 select? = expression
 level? = "single" | "multiple" | "any"
 count? = pattern
 from? = pattern
 format? = { string }
 lang? = { nmtoken }
 letter-value? = { "alphabetic" | "traditional" }
 ordinal? = { string }
 grouping-separator? = { char }
 grouping-size? = { number
} />

otherwise - A predictable behavior for processors (page 80)
- XSLT 2.0 - 8.2 Conditional Processing with xsl:choose
- <xsl:otherwise>
 <!-- Content: sequence-constructor -->
</xsl:otherwise>

output - The transformation environment (page 83)
- XSLT 2.0 - 20 Serialization
- <!-- Category: declaration -->
<xsl:output
 name? = qname
 method? = "xml" | "html" | "xhtml" | "text" | qname-but-not-ncname
 byte-order-mark? = "yes" | "no"
 cdata-section-elements? = qnames
 doctype-public? = string
 doctype-system? = string
 encoding? = string
 escape-uri-attributes? = "yes" | "no"
 include-content-type? = "yes" | "no"
 indent? = "yes" | "no"
 media-type? = string
 normalization-form? = "NFC" | "NFD" | "NFKC" | "NFKD" |
"fully-normalized" | "none" | nmtoken
 omit-xml-declaration? = "yes" | "no"
 standalone? = "yes" | "no" | "omit"
 undeclare-prefixes? = "yes" | "no"
 use-character-maps? = qnames
 version? = nmtoken />

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 132 of 179

Practical Transformation Using XSLT and XPath

output-character - The transformation environment (page 83)
- XSLT 2.0 - 20.1 Character Maps
- <xsl:output-character
 character = char
 string = string />

param - Why modularize logical and physical structures? (page 88)
- XSLT 2.0 - 9.2 Parameters
- <!-- Category: declaration -->
<xsl:param
 name = qname
 select? = expression
 as? = sequence-type
 required? = "yes" | "no"
 tunnel? = "yes" | "no">
 <!-- Content: sequence-constructor -->
</xsl:param>

perform-sort - Sorting and grouping (page 107)
- XSLT 2.0 - 13.2 Creating a Sorted Sequence
- <!-- Category: instruction -->
<xsl:perform-sort
 select? = expression>
 <!-- Content: (xsl:sort+, sequence-constructor) -->
</xsl:perform-sort>

preserve-space - XPath data model (page 76)
- XSLT 2.0 - 4.4 Stripping Whitespace from a Source Tree
- <!-- Category: declaration -->
<xsl:preserve-space
 elements = tokens />

processing-instruction - Constructing result-tree nodes (page 103)
- XSLT 2.0 - 11.6 Creating Processing Instructions
- <!-- Category: instruction -->
<xsl:processing-instruction
 name = { ncname }
 select? = expression>
 <!-- Content: sequence-constructor -->
</xsl:processing-instruction>

Page 133 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
result-document - The transformation environment (page 83)

- XSLT 2.0 - 19.1 Creating Final Result Trees
- <!-- Category: instruction -->
<xsl:result-document
 format? = { qname }
 href? = { uri-reference }
 validation? = "strict" | "lax" | "preserve" | "strip"
 type? = qname
 method? = { "xml" | "html" | "xhtml" | "text" | qname-but-not-ncname
 }
 byte-order-mark? = { "yes" | "no" }
 cdata-section-elements? = { qnames }
 doctype-public? = { string }
 doctype-system? = { string }
 encoding? = { string }
 escape-uri-attributes? = { "yes" | "no" }
 include-content-type? = { "yes" | "no" }
 indent? = { "yes" | "no" }
 media-type? = { string }
 normalization-form? = { "NFC" | "NFD" | "NFKC" | "NFKD"
| "fully-normalized" | "none" | nmtoken }
 omit-xml-declaration? = { "yes" | "no" }
 standalone? = { "yes" | "no" | "omit" }
 undeclare-prefixes? = { "yes" | "no" }
 use-character-maps? = qnames
 output-version? = { nmtoken }>
 <!-- Content: sequence-constructor -->
</xsl:result-document>

sequence - Why modularize logical and physical structures? (page 88)
- XSLT 2.0 - 11.10 Constructing Sequences
- <!-- Category: instruction -->
<xsl:sequence
 select = expression>
 <!-- Content: xsl:fallback* -->
</xsl:sequence>

sort - Sorting and grouping (page 107)
- XSLT 2.0 - 13.1 The xsl:sort Element
- <xsl:sort
 select? = expression
 lang? = { nmtoken }
 order? = { "ascending" | "descending" }
 collation? = { uri }
 stable? = { "yes" | "no" }
 case-order? = { "upper-first" | "lower-first" }
 data-type? = { "text" | "number" | qname-but-not-ncname }>
 <!-- Content: sequence-constructor -->
</xsl:sort>

strip-space - XPath data model (page 76)
- XSLT 2.0 - 4.4 Stripping Whitespace from a Source Tree
- <!-- Category: declaration -->
<xsl:strip-space
 elements = tokens />

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 134 of 179

Practical Transformation Using XSLT and XPath

stylesheet - The transformation environment (page 83)
- XSLT 2.0 - 3.6 Stylesheet Element
- <xsl:stylesheet
 id? = id
 extension-element-prefixes? = tokens
 exclude-result-prefixes? = tokens
 version = number
 xpath-default-namespace? = uri
 default-validation? = "preserve" | "strip"
 default-collation? = uri-list
 input-type-annotations? = "preserve" | "strip" | "unspecified">
 <!-- Content: (xsl:import*, other-declarations) -->
</xsl:stylesheet>

template - A predictable behavior for processors (page 80)
- XSLT 2.0 - 6.1 Defining Templates
- <!-- Category: declaration -->
<xsl:template
 match? = pattern
 name? = qname
 priority? = number
 mode? = tokens
 as? = sequence-type>
 <!-- Content: (xsl:param*, sequence-constructor) -->
</xsl:template>

text - Constructing result-tree nodes (page 103)
- XSLT 2.0 - 11.4.2 Creating Text Nodes Using xsl:text
- <!-- Category: instruction -->
<xsl:text
 [disable-output-escaping]?
= "yes" | "no">
 <!-- Content: #PCDATA -->
</xsl:text>

transform - The transformation environment (page 83)
- XSLT 2.0 - 3.6 Stylesheet Element
- <xsl:transform
 id? = id
 extension-element-prefixes? = tokens
 exclude-result-prefixes? = tokens
 version = number
 xpath-default-namespace? = uri
 default-validation? = "preserve" | "strip"
 default-collation? = uri-list
 input-type-annotations? = "preserve" | "strip" | "unspecified">
 <!-- Content: (xsl:import*, other-declarations) -->
</xsl:transform>

Page 135 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
value-of - A predictable behavior for processors (page 80)

- XSLT 2.0 - 11.4.3 Generating Text with xsl:value-of
- <!-- Category: instruction -->
<xsl:value-of
 select? = expression
 separator? = { string }
 [disable-output-escaping]?
= "yes" | "no">
 <!-- Content: sequence-constructor -->
</xsl:value-of>

variable - Why modularize logical and physical structures? (page 88)
- XSLT 2.0 - 9.1 Variables
- <!-- Category: declaration -->
<!-- Category: instruction -->
<xsl:variable
 name = qname
 select? = expression
 as? = sequence-type>
 <!-- Content: sequence-constructor -->
</xsl:variable>

when - A predictable behavior for processors (page 80)
- XSLT 2.0 - 8.2 Conditional Processing with xsl:choose
- <xsl:when
 test = expression>
 <!-- Content: sequence-constructor -->
</xsl:when>

with-param - Why modularize logical and physical structures? (page 88)
- XSLT 2.0 - 10.1.1 Passing Parameters to Templates
- <xsl:with-param
 name = qname
 select? = expression
 as? = sequence-type
 tunnel? = "yes" | "no">
 <!-- Content: sequence-constructor -->
</xsl:with-param>

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 136 of 179

Practical Transformation Using XSLT and XPath

XPath 2.0 and XSLT 2.0 function summary
Annex C - Instruction, function and grammar summaries
Section 2 - Vocabulary, functions and grammars XSLT 2.0 and XPath 2.0

All functions of both XPath 2.0 and XSLT 2.0 in alphabetical order follow. This information
is mechanically derived from the XPath 2.0 Functions and XSLT 2.0 Recommendations.

abs - Data type expressions and functions (page 94)
- XPath 2.0 - 6.4 Functions on Numeric Values
- numeric abs(numeric)

adjust-date-to-timezone - Data type expressions and functions (page 97)
- XPath 2.0 - 10.7 Timezone Adjustment Functions on Dates and Time Values
- xs:date adjust-date-to-timezone(xs:date)

xs:date adjust-date-to-timezone(xs:date, xs:dayTimeDuration)

adjust-dateTime-to-timezone - Data type expressions and functions (page 97)
- XPath 2.0 - 10.7 Timezone Adjustment Functions on Dates and Time Values
- xs:dateTime adjust-dateTime-to-timezone(xs:dateTime)

xs:dateTime adjust-dateTime-to-timezone(xs:dateTime,
xs:dayTimeDuration)

adjust-time-to-timezone - Data type expressions and functions (page 97)
- XPath 2.0 - 10.7 Timezone Adjustment Functions on Dates and Time Values
- xs:time adjust-time-to-timezone(xs:time)

xs:time adjust-time-to-timezone(xs:time, xs:dayTimeDuration)

avg - Data type expressions and functions (page 96)
- XPath 2.0 - 15.4 Aggregate Functions
- xs:anyAtomicType avg(xs:anyAtomicType*)

base-uri - Data type expressions and functions (page 99)
- XPath 2.0 - 2 Accessors
- xs:anyURI base-uri()

xs:anyURI base-uri(node())

boolean - Data type expressions and functions (page 94)
- XPath 2.0 - 15.1 General Functions and Operators on Sequences
- xs:boolean boolean(item()*)

ceiling - Data type expressions and functions (page 94)
- XPath 2.0 - 6.4 Functions on Numeric Values
- numeric ceiling(numeric)

codepoint-equal - Data type expressions and functions (page 94)
- XPath 2.0 - 7.3 Equality and Comparison of Strings
- xs:boolean codepoint-equal(xs:string, xs:string)

codepoints-to-string - Data type expressions and functions (page 94)
- XPath 2.0 - 7.2 Functions to Assemble and Disassemble Strings
- xs:string codepoints-to-string(xs:integer*)

Page 137 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
collection - Why modularize logical and physical structures? (page 89)

- XPath 2.0 - 15.5 Functions and Operators that Generate Sequences
- node()* collection()

node()* collection(xs:string)

compare - Data type expressions and functions (page 94)
- XPath 2.0 - 7.3 Equality and Comparison of Strings
- xs:integer compare(xs:string, xs:string)

xs:integer compare(xs:string, xs:string, xs:string)

concat - Data type expressions and functions (page 94)
- XPath 2.0 - 7.4 Functions on String Values
- xs:string concat(xs:anyAtomicType, xs:anyAtomicType,)

contains - Data type expressions and functions (page 94)
- XPath 2.0 - 7.5 Functions Based on Substring Matching
- xs:boolean contains(xs:string, xs:string)

xs:boolean contains(xs:string, xs:string, xs:string)

count - Data type expressions and functions (page 96)
- XPath 2.0 - 15.4 Aggregate Functions
- xs:integer count(item()*)

current - Data type expressions and functions (page 100)
- XSLT 2.0 - 16.6.1 current
- item() current()

current-date - Data type expressions and functions (page 97)
- XPath 2.0 - 16 Context Functions
- xs:date current-date()

current-dateTime - Data type expressions and functions (page 97)
- XPath 2.0 - 16 Context Functions
- xs:dateTime current-dateTime()

current-group - Sorting and grouping (page 107)
- XSLT 2.0 - 14.1 The Current Group
- item()* current-group()

current-grouping-key - Sorting and grouping (page 107)
- XSLT 2.0 - 14.2 The Current Grouping Key
- xs:anyAtomicType? current-grouping-key()

current-time - Data type expressions and functions (page 97)
- XPath 2.0 - 16 Context Functions
- xs:time current-time()

data - Data type expressions and functions (page 99)
- XPath 2.0 - 2 Accessors
- xs:anyAtomicType* data(item()*)

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 138 of 179

Practical Transformation Using XSLT and XPath

dateTime - Data type expressions and functions (page 97)
- XPath 2.0 - 5 Constructor Functions
- xs:dateTime dateTime(xs:date, xs:time)

day-from-date - Data type expressions and functions (page 97)
- XPath 2.0 - 10.5 Component Extraction Functions on Durations, Dates and Times
- xs:integer day-from-date(xs:date)

day-from-dateTime - Data type expressions and functions (page 97)
- XPath 2.0 - 10.5 Component Extraction Functions on Durations, Dates and Times
- xs:integer day-from-dateTime(xs:dateTime)

days-from-duration - Data type expressions and functions (page 97)
- XPath 2.0 - 10.5 Component Extraction Functions on Durations, Dates and Times
- xs:integer days-from-duration(xs:duration)

deep-equal - Data type expressions and functions (page 96)
- XPath 2.0 - 15.3 Equals, Union, Intersection and Except
- xs:boolean deep-equal(item()*, item()*)

xs:boolean deep-equal(item()*, item()*, string)

default-collation - Data type expressions and functions (page 95)
- XPath 2.0 - 16 Context Functions
- xs:string default-collation()

distinct-values - Data type expressions and functions (page 96)
- XPath 2.0 - 15.1 General Functions and Operators on Sequences
- xs:anyAtomicType* distinct-values(xs:anyAtomicType*)

xs:anyAtomicType* distinct-values(xs:anyAtomicType*, xs:string)

doc - Why modularize logical and physical structures? (page 89)
- XPath 2.0 - 15.5 Functions and Operators that Generate Sequences
- document-node() doc(xs:string)

doc-available - Why modularize logical and physical structures? (page 89)
- XPath 2.0 - 15.5 Functions and Operators that Generate Sequences
- xs:boolean doc-available(xs:string)

document - Why modularize logical and physical structures? (page 89)
- XSLT 2.0 - 16.1 Multiple Source Documents
- node()* document(uri-sequence)

node()* document(uri-sequence, base-node)

document-uri - Data type expressions and functions (page 99)
- XPath 2.0 - 2 Accessors
- xs:anyURI document-uri(node())

element-available - Why modularize logical and physical structures? (page 89)
- XSLT 2.0 - 18.2.2 Testing Availability of Instructions
- xs:boolean element-available(element-name)

Page 139 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
empty - Data type expressions and functions (page 96)

- XPath 2.0 - 15.1 General Functions and Operators on Sequences
- xs:boolean empty(item()*)

encode-for-uri - Data type expressions and functions (page 100)
- XPath 2.0 - 7.4 Functions on String Values
- xs:string encode-for-uri(xs:string)

ends-with - Data type expressions and functions (page 95)
- XPath 2.0 - 7.5 Functions Based on Substring Matching
- xs:boolean ends-with(xs:string, xs:string)

xs:boolean ends-with(xs:string, xs:string, xs:string)

error - The transformation environment (page 82)
- XPath 2.0 - 3 The Error Function
- error()

error(xs:QName)

error(xs:QName, xs:string)

error(xs:QName, xs:string, item()*)

escape-html-uri - Data type expressions and functions (page 100)
- XPath 2.0 - 7.4 Functions on String Values
- xs:string escape-html-uri(xs:string)

exactly-one - Data type expressions and functions (page 96)
- XPath 2.0 - 15.2 Functions That Test the Cardinality of Sequences
- item() exactly-one(item()*)

exists - Data type expressions and functions (page 96)
- XPath 2.0 - 15.1 General Functions and Operators on Sequences
- xs:boolean exists(item()*)

false - Data type expressions and functions (page 94)
- XPath 2.0 - 9.1 Additional Boolean Constructor Functions
- xs:boolean false()

floor - Data type expressions and functions (page 94)
- XPath 2.0 - 6.4 Functions on Numeric Values
- numeric floor(numeric)

format-date - Data type expressions and functions (page 97)
- XSLT 2.0 - 16.5 Formatting Dates and Times
- xs:string? format-date(value, picture, language, calendar, country
)

xs:string? format-date(value, picture)

format-dateTime - Data type expressions and functions (page 97)
- XSLT 2.0 - 16.5 Formatting Dates and Times
- xs:string? format-dateTime(value, picture, language, calendar,
country)

xs:string? format-dateTime(value, picture)

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 140 of 179

Practical Transformation Using XSLT and XPath

format-number - Data type expressions and functions (page 95)
- XSLT 2.0 - 16.4 Number Formatting
- xs:string format-number(value, picture)

xs:string format-number(value, picture, decimal-format-name)

format-time - Data type expressions and functions (page 97)
- XSLT 2.0 - 16.5 Formatting Dates and Times
- xs:string? format-time(value, picture, language, calendar, country
)

xs:string? format-time(value, picture)

function-available - Why modularize logical and physical structures? (page 89)
- XSLT 2.0 - 18.1.1 Testing Availability of Functions
- xs:boolean function-available(function-name)

xs:boolean function-available(function-name, arity)

generate-id - Data type expressions and functions (page 99)
- XSLT 2.0 - 16.6.4 generate-id
- xs:string generate-id()

xs:string generate-id(node)

hours-from-dateTime - Data type expressions and functions (page 97)
- XPath 2.0 - 10.5 Component Extraction Functions on Durations, Dates and Times
- xs:integer hours-from-dateTime(xs:dateTime)

hours-from-duration - Data type expressions and functions (page 97)
- XPath 2.0 - 10.5 Component Extraction Functions on Durations, Dates and Times
- xs:integer hours-from-duration(xs:duration)

hours-from-time - Data type expressions and functions (page 97)
- XPath 2.0 - 10.5 Component Extraction Functions on Durations, Dates and Times
- xs:integer hours-from-time(xs:time)

id - Data type expressions and functions (page 100)
- XPath 2.0 - 15.5 Functions and Operators that Generate Sequences
- element()* id(xs:string*)

element()* id(xs:string*, node())

idref - Data type expressions and functions (page 100)
- XPath 2.0 - 15.5 Functions and Operators that Generate Sequences
- node()* idref(xs:string*)

node()* idref(xs:string*, node())

implicit-timezone - Data type expressions and functions (page 97)
- XPath 2.0 - 16 Context Functions
- xs:dayTimeDuration implicit-timezone()

in-scope-prefixes - Data type expressions and functions (page 99)
- XPath 2.0 - 11.2 Functions and Operators Related to QNames
- xs:string* in-scope-prefixes(element())

Page 141 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
index-of - Data type expressions and functions (page 96)

- XPath 2.0 - 15.1 General Functions and Operators on Sequences
- xs:integer* index-of(xs:anyAtomicType*, xs:anyAtomicType)

xs:integer* index-of(xs:anyAtomicType*, xs:anyAtomicType, xs:string
)

insert-before - Data type expressions and functions (page 96)
- XPath 2.0 - 15.1 General Functions and Operators on Sequences
- item()* insert-before(item()*, xs:integer, item()*)

iri-to-uri - Data type expressions and functions (page 100)
- XPath 2.0 - 7.4 Functions on String Values
- xs:string iri-to-uri(xs:string)

key - Data type expressions and functions (page 100)
- XSLT 2.0 - 16.3.2 The key Function
- node()* key(key-name, key-value)

node()* key(key-name, key-value, top)

lang - Data type expressions and functions (page 94)
- XPath 2.0 - 14 Functions and Operators on Nodes
- xs:boolean lang(xs:string)

xs:boolean lang(xs:string, node())

last - XPath data model (page 76)
- XPath 2.0 - 16 Context Functions
- xs:integer last()

local-name - Data type expressions and functions (page 99)
- XPath 2.0 - 14 Functions and Operators on Nodes
- xs:string local-name()

xs:string local-name(node())

local-name-from-QName - Data type expressions and functions (page 99)
- XPath 2.0 - 11.2 Functions and Operators Related to QNames
- xs:NCName local-name-from-QName(xs:QName)

lower-case - Data type expressions and functions (page 95)
- XPath 2.0 - 7.4 Functions on String Values
- xs:string lower-case(xs:string)

matches - Data type expressions and functions (page 95)
- XPath 2.0 - 7.6 String Functions that Use Pattern Matching
- xs:boolean matches(xs:string, xs:string)

xs:boolean matches(xs:string, xs:string, xs:string)

max - Data type expressions and functions (page 96)
- XPath 2.0 - 15.4 Aggregate Functions
- xs:anyAtomicType max(xs:anyAtomicType*)

xs:anyAtomicType max(xs:anyAtomicType*, string)

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 142 of 179

Practical Transformation Using XSLT and XPath

min - Data type expressions and functions (page 96)
- XPath 2.0 - 15.4 Aggregate Functions
- xs:anyAtomicType min(xs:anyAtomicType*)

xs:anyAtomicType min(xs:anyAtomicType*, string)

minutes-from-dateTime - Data type expressions and functions (page 98)
- XPath 2.0 - 10.5 Component Extraction Functions on Durations, Dates and Times
- xs:integer minutes-from-dateTime(xs:dateTime)

minutes-from-duration - Data type expressions and functions (page 98)
- XPath 2.0 - 10.5 Component Extraction Functions on Durations, Dates and Times
- xs:integer minutes-from-duration(xs:duration)

minutes-from-time - Data type expressions and functions (page 98)
- XPath 2.0 - 10.5 Component Extraction Functions on Durations, Dates and Times
- xs:integer minutes-from-time(xs:time)

month-from-date - Data type expressions and functions (page 98)
- XPath 2.0 - 10.5 Component Extraction Functions on Durations, Dates and Times
- xs:integer month-from-date(xs:date)

month-from-dateTime - Data type expressions and functions (page 98)
- XPath 2.0 - 10.5 Component Extraction Functions on Durations, Dates and Times
- xs:integer month-from-dateTime(xs:dateTime)

months-from-duration - Data type expressions and functions (page 98)
- XPath 2.0 - 10.5 Component Extraction Functions on Durations, Dates and Times
- xs:integer months-from-duration(xs:duration)

name - Data type expressions and functions (page 99)
- XPath 2.0 - 14 Functions and Operators on Nodes
- xs:string name()

xs:string name(node())

namespace-uri - Data type expressions and functions (page 99)
- XPath 2.0 - 14 Functions and Operators on Nodes
- xs:anyURI namespace-uri()

xs:anyURI namespace-uri(node())

namespace-uri-for-prefix - Data type expressions and functions (page 99)
- XPath 2.0 - 11.2 Functions and Operators Related to QNames
- xs:anyURI namespace-uri-for-prefix(xs:string, element())

namespace-uri-from-QName - Data type expressions and functions (page 99)
- XPath 2.0 - 11.2 Functions and Operators Related to QNames
- xs:anyURI namespace-uri-from-QName(xs:QName)

nilled - Data type expressions and functions (page 99)
- XPath 2.0 - 2 Accessors
- xs:boolean nilled(node())

Page 143 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
node-name - Data type expressions and functions (page 99)

- XPath 2.0 - 2 Accessors
- xs:QName node-name(node())

normalize-space - Data type expressions and functions (page 95)
- XPath 2.0 - 7.4 Functions on String Values
- xs:string normalize-space()

xs:string normalize-space(xs:string)

normalize-unicode - Data type expressions and functions (page 95)
- XPath 2.0 - 7.4 Functions on String Values
- xs:string normalize-unicode(xs:string)

xs:string normalize-unicode(xs:string, xs:string)

not - Data type expressions and functions (page 94)
- XPath 2.0 - 9.3 Functions on Boolean Values
- xs:boolean not(item()*)

number - Data type expressions and functions (page 94)
- XPath 2.0 - 14 Functions and Operators on Nodes
- xs:double number()

xs:double number(xs:anyAtomicType)

one-or-more - Data type expressions and functions (page 96)
- XPath 2.0 - 15.2 Functions That Test the Cardinality of Sequences
- item()+ one-or-more(item()*)

position - XPath data model (page 76)
- XPath 2.0 - 16 Context Functions
- xs:integer position()

prefix-from-QName - Data type expressions and functions (page 99)
- XPath 2.0 - 11.2 Functions and Operators Related to QNames
- xs:NCName prefix-from-QName(xs:QName)

QName - Data type expressions and functions (page 99)
- XPath 2.0 - 11.1 Additional Constructor Functions for QNames
- xs:QName QName(xs:string, xs:string)

regex-group - Data type expressions and functions (page 100)
- XSLT 2.0 - 15.2 Captured Substrings
- xs:string regex-group(group-number)

remove - Data type expressions and functions (page 96)
- XPath 2.0 - 15.1 General Functions and Operators on Sequences
- item()* remove(item()*, xs:integer)

replace - Data type expressions and functions (page 95)
- XPath 2.0 - 7.6 String Functions that Use Pattern Matching
- xs:string replace(xs:string, xs:string, xs:string)

xs:string replace(xs:string, xs:string, xs:string, xs:string)

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 144 of 179

Practical Transformation Using XSLT and XPath

resolve-QName - Data type expressions and functions (page 99)
- XPath 2.0 - 11.1 Additional Constructor Functions for QNames
- xs:QName resolve-QName(xs:string, element())

resolve-uri - Data type expressions and functions (page 100)
- XPath 2.0 - 8 Functions on anyURI
- xs:anyURI resolve-uri(xs:string)

xs:anyURI resolve-uri(xs:string, xs:string)

reverse - Data type expressions and functions (page 96)
- XPath 2.0 - 15.1 General Functions and Operators on Sequences
- item()* reverse(item()*)

root - Data type expressions and functions (page 99)
- XPath 2.0 - 14 Functions and Operators on Nodes
- node() root()

node() root(node())

round - Data type expressions and functions (page 94)
- XPath 2.0 - 6.4 Functions on Numeric Values
- numeric round(numeric)

round-half-to-even - Data type expressions and functions (page 94)
- XPath 2.0 - 6.4 Functions on Numeric Values
- numeric round-half-to-even(numeric)

numeric round-half-to-even(numeric, xs:integer)

seconds-from-dateTime - Data type expressions and functions (page 98)
- XPath 2.0 - 10.5 Component Extraction Functions on Durations, Dates and Times
- xs:decimal seconds-from-dateTime(xs:dateTime)

seconds-from-duration - Data type expressions and functions (page 98)
- XPath 2.0 - 10.5 Component Extraction Functions on Durations, Dates and Times
- xs:decimal seconds-from-duration(xs:duration)

seconds-from-time - Data type expressions and functions (page 98)
- XPath 2.0 - 10.5 Component Extraction Functions on Durations, Dates and Times
- xs:decimal seconds-from-time(xs:time)

starts-with - Data type expressions and functions (page 95)
- XPath 2.0 - 7.5 Functions Based on Substring Matching
- xs:boolean starts-with(xs:string, xs:string)

xs:boolean starts-with(xs:string, xs:string, xs:string)

static-base-uri - Data type expressions and functions (page 99)
- XPath 2.0 - 16 Context Functions
- xs:anyURI static-base-uri()

Page 145 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
string - Data type expressions and functions (page 95)

- XPath 2.0 - 2 Accessors
- xs:string string()

xs:string string(item())

string-join - Data type expressions and functions (page 95)
- XPath 2.0 - 7.4 Functions on String Values
- xs:string string-join(xs:string*, xs:string)

string-length - Data type expressions and functions (page 95)
- XPath 2.0 - 7.4 Functions on String Values
- xs:integer string-length()

xs:integer string-length(xs:string)

string-to-codepoints - Data type expressions and functions (page 95)
- XPath 2.0 - 7.2 Functions to Assemble and Disassemble Strings
- xs:integer* string-to-codepoints(xs:string)

subsequence - Data type expressions and functions (page 96)
- XPath 2.0 - 15.1 General Functions and Operators on Sequences
- item()* subsequence(item()*, xs:double)

item()* subsequence(item()*, xs:double, xs:double)

substring - Data type expressions and functions (page 95)
- XPath 2.0 - 7.4 Functions on String Values
- xs:string substring(xs:string, xs:double)

xs:string substring(xs:string, xs:double, xs:double)

substring-after - Data type expressions and functions (page 95)
- XPath 2.0 - 7.5 Functions Based on Substring Matching
- xs:string substring-after(xs:string, xs:string)

xs:string substring-after(xs:string, xs:string, xs:string)

substring-before - Data type expressions and functions (page 95)
- XPath 2.0 - 7.5 Functions Based on Substring Matching
- xs:string substring-before(xs:string, xs:string)

xs:string substring-before(xs:string, xs:string, xs:string)

sum - Data type expressions and functions (page 96)
- XPath 2.0 - 15.4 Aggregate Functions
- xs:anyAtomicType sum(xs:anyAtomicType*)

xs:anyAtomicType sum(xs:anyAtomicType*, xs:anyAtomicType)

system-property - The transformation environment (page 83)
- XSLT 2.0 - 16.6.5 system-property
- xs:string system-property(property-name)

timezone-from-date - Data type expressions and functions (page 98)
- XPath 2.0 - 10.5 Component Extraction Functions on Durations, Dates and Times
- xs:dayTimeDuration timezone-from-date(xs:date)

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 146 of 179

Practical Transformation Using XSLT and XPath

timezone-from-dateTime - Data type expressions and functions (page 98)
- XPath 2.0 - 10.5 Component Extraction Functions on Durations, Dates and Times
- xs:dayTimeDuration timezone-from-dateTime(xs:dateTime)

timezone-from-time - Data type expressions and functions (page 98)
- XPath 2.0 - 10.5 Component Extraction Functions on Durations, Dates and Times
- xs:dayTimeDuration timezone-from-time(xs:time)

tokenize - Data type expressions and functions (page 95)
- XPath 2.0 - 7.6 String Functions that Use Pattern Matching
- xs:string* tokenize(xs:string, xs:string)

xs:string* tokenize(xs:string, xs:string, xs:string)

trace - The transformation environment (page 82)
- XPath 2.0 - 4 The Trace Function
- item()* trace(item()*, xs:string)

translate - Data type expressions and functions (page 95)
- XPath 2.0 - 7.4 Functions on String Values
- xs:string translate(xs:string, xs:string, xs:string)

true - Data type expressions and functions (page 94)
- XPath 2.0 - 9.1 Additional Boolean Constructor Functions
- xs:boolean true()

type-available - The transformation environment (page 83)
- XSLT 2.0 - 18.1.4 Testing Availability of Types
- xs:boolean type-available(type-name)

unordered - Data type expressions and functions (page 96)
- XPath 2.0 - 15.1 General Functions and Operators on Sequences
- item()* unordered(item()*)

unparsed-entity-public-id - Why modularize logical and physical structures? (page 89)
- XSLT 2.0 - 16.6.3 unparsed-entity-public-id
- xs:string unparsed-entity-public-id(entity-name)

unparsed-entity-uri - Why modularize logical and physical structures? (page 89)
- XSLT 2.0 - 16.6.2 unparsed-entity-uri
- xs:anyURI unparsed-entity-uri(entity-name)

unparsed-text - Why modularize logical and physical structures? (page 89)
- XSLT 2.0 - 16.2 Reading Text Files
- xs:string? unparsed-text(href)

xs:string? unparsed-text(href, encoding)

unparsed-text-available - Why modularize logical and physical structures? (page 89)
- XSLT 2.0 - 16.2 Reading Text Files
- xs:boolean unparsed-text-available(href)

xs:boolean unparsed-text-available(href, encoding)

Page 147 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
upper-case - Data type expressions and functions (page 95)

- XPath 2.0 - 7.4 Functions on String Values
- xs:string upper-case(xs:string)

year-from-date - Data type expressions and functions (page 98)
- XPath 2.0 - 10.5 Component Extraction Functions on Durations, Dates and Times
- xs:integer year-from-date(xs:date)

year-from-dateTime - Data type expressions and functions (page 98)
- XPath 2.0 - 10.5 Component Extraction Functions on Durations, Dates and Times
- xs:integer year-from-dateTime(xs:dateTime)

years-from-duration - Data type expressions and functions (page 98)
- XPath 2.0 - 10.5 Component Extraction Functions on Durations, Dates and Times
- xs:integer years-from-duration(xs:duration)

zero-or-one - Data type expressions and functions (page 96)
- XPath 2.0 - 15.2 Functions That Test the Cardinality of Sequences
- item() zero-or-one(item()*)

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 148 of 179

Practical Transformation Using XSLT and XPath

XPath 2.0 grammar productions
Annex C - Instruction, function and grammar summaries
Section 2 - Vocabulary, functions and grammars XSLT 2.0 and XPath 2.0

Expressions (3)
Expr[2] ::= [1] XPath

ExprSingle[3] ("," ExprSingle[3])* ::= [2] Expr
ForExpr[4]| QuantifiedExpr[6]| IfExpr[7]| OrExpr[8] ::= [3] ExprSingle

For Expressions (3.7)
SimpleForClause[5] "return" ExprSingle[3] ::= [4] ForExpr

"for" "$" VarName[45] "in" ExprSingle[3] ("," "$"
VarName[45] "in" ExprSingle[3])*

 ::= [5] SimpleForClause

Quantified Expressions (3.9)
("some" | "every") "$" VarName[45] "in" ExprSingle[3]
("," "$" VarName[45] "in" ExprSingle[3])* "satisfies"
ExprSingle[3]

 ::= [6] QuantifiedExpr

Conditional Expressions (3.8)
"if" "(" Expr[2] ")" "then" ExprSingle[3] "else" ExprSingle[3] ::= [7] IfExpr

Logical Expressions (3.6)
AndExpr[9] ("or" AndExpr[9])* ::= [8] OrExpr
ComparisonExpr[10] ("and" ComparisonExpr[10])* ::= [9] AndExpr

Comparison Expressions (3.5)
RangeExpr[11] ((ValueComp[23]| GeneralComp[22]|
NodeComp[24]) RangeExpr[11])?

 ::= [10] ComparisonExpr

Constructing Sequences (3.3.1)
AdditiveExpr[12] ("to" AdditiveExpr[12])? ::= [11] RangeExpr

Arithmetic Expressions (3.4)
MultiplicativeExpr[13] (("+" | "-")
MultiplicativeExpr[13])*

 ::= [12] AdditiveExpr

UnionExpr[14] (("*" | "div" | "idiv" | "mod")
UnionExpr[14])*

 ::= [13] MultiplicativeExpr

Combining Node Sequences (3.3.3)
IntersectExceptExpr[15] (("union" | "|")
IntersectExceptExpr[15])*

 ::= [14] UnionExpr

InstanceofExpr[16] (("intersect" | "except")
InstanceofExpr[16])*

 ::= [15] IntersectExceptExpr

Instance Of (3.10.1)
TreatExpr[17] ("instance" "of" SequenceType[50])? ::= [16] InstanceofExpr

Treat (3.10.5)
CastableExpr[18] ("treat" "as" SequenceType[50])? ::= [17] TreatExpr

Castable (3.10.3)
CastExpr[19] ("castable" "as" SingleType[49])? ::= [18] CastableExpr

Page 149 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Cast (3.10.2)

UnaryExpr[20] ("cast" "as" SingleType[49])? ::= [19] CastExpr

Arithmetic Expressions (3.4)
("-" | "+")* ValueExpr[21] ::= [20] UnaryExpr
PathExpr[25] ::= [21] ValueExpr

Comparison Expressions (3.5)
"=" | "!=" | "<" | "<=" | ">" | ">=" ::= [22] GeneralComp

"eq" | "ne" | "lt" | "le" | "gt" | "ge" ::= [23] ValueComp
"is" | "<<" | ">>" ::= [24] NodeComp

Path Expressions (3.2)
("/" RelativePathExpr[26]?)| ("//" RelativePathExpr[26])|
RelativePathExpr[26]

 ::= [25] PathExpr

StepExpr[27] (("/" | "//") StepExpr[27])* ::= [26] RelativePathExpr

Steps (3.2.1)
FilterExpr[38] | AxisStep[28] ::= [27] StepExpr
(ReverseStep[32] | ForwardStep[29]) PredicateList[39] ::= [28] AxisStep

(ForwardAxis[30] NodeTest[35]) | AbbrevForwardStep[31] ::= [29] ForwardStep

Axes (3.2.1.1)
("child" "::")| ("descendant" "::")| ("attribute" "::")|
("self" "::")| ("descendant-or-self" "::")|
("following-sibling" "::")| ("following" "::")|
("namespace" "::")

 ::= [30] ForwardAxis

Abbreviated Syntax (3.2.4)
"@"? NodeTest[35] ::= [31] AbbrevForwardStep

Steps (3.2.1)
(ReverseAxis[33] NodeTest[35]) | AbbrevReverseStep[34] ::= [32] ReverseStep

Axes (3.2.1.1)
("parent" "::")| ("ancestor" "::")| ("preceding-sibling"
"::")| ("preceding" "::")| ("ancestor-or-self" "::")

 ::= [33] ReverseAxis

Abbreviated Syntax (3.2.4)
".." ::= [34] AbbrevReverseStep

Node Tests (3.2.1.2)
KindTest[54] | NameTest[36] ::= [35] NodeTest
QName[78] | Wildcard[37] ::= [36] NameTest
"*"| (NCName[79] ":" "*")| ("*" ":" NCName[79]) ::= [37] Wildcard

Filter Expressions (3.3.2)
PrimaryExpr[41] PredicateList[39] ::= [38] FilterExpr

Steps (3.2.1)
Predicate[40]* ::= [39] PredicateList

Predicates (3.2.2)
"[" Expr[2] "]" ::= [40] Predicate

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 150 of 179

Practical Transformation Using XSLT and XPath

Primary Expressions (3.1)
Literal[42] | VarRef[44] | ParenthesizedExpr[46] |
ContextItemExpr[47] | FunctionCall[48]

 ::= [41] PrimaryExpr

Literals (3.1.1)
NumericLiteral[43] | StringLiteral[74] ::= [42] Literal

IntegerLiteral[71] | DecimalLiteral[72] |
DoubleLiteral[73]

 ::= [43] NumericLiteral

Variable References (3.1.2)
"$" VarName[45] ::= [44] VarRef
QName[78] ::= [45] VarName

Parenthesized Expressions (3.1.3)
"(" Expr[2]? ")" ::= [46] ParenthesizedExpr

Context Item Expression (3.1.4)
"." ::= [47] ContextItemExpr

Function Calls (3.1.5)
QName[78] "(" (ExprSingle[3] ("," ExprSingle[3])*)? ")" ::= [48] FunctionCall

Cast (3.10.2)
AtomicType[53] "?"? ::= [49] SingleType

Page 151 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
SequenceType Syntax (2.5.3)

("empty-sequence" "(" ")")| (ItemType[52]
OccurrenceIndicator[51]?)

 ::= [50] SequenceType

"?" | "*" | "+" ::= [51] OccurrenceIndicator
KindTest[54] | ("item" "(" ")") | AtomicType[53] ::= [52] ItemType
QName[78] ::= [53] AtomicType

DocumentTest[56]| ElementTest[64]| AttributeTest[60]|
SchemaElementTest[66]| SchemaAttributeTest[62]| PITest[59]|
CommentTest[58]| TextTest[57]| AnyKindTest[55]

 ::= [54] KindTest

"node" "(" ")" ::= [55] AnyKindTest
"document-node" "(" (ElementTest[64] |
SchemaElementTest[66])? ")"

 ::= [56] DocumentTest

"text" "(" ")" ::= [57] TextTest
"comment" "(" ")" ::= [58] CommentTest

"processing-instruction" "(" (NCName[79] | StringLiteral[74])?
")"

 ::= [59] PITest

"attribute" "(" (AttribNameOrWildcard[61] (","
TypeName[70])?)? ")"

 ::= [60] AttributeTest

AttributeName[68] | "*" ::= [61] AttribNameOrWildcard
"schema-attribute" "(" AttributeDeclaration[63]
")"

 ::= [62] SchemaAttributeTest

AttributeName[68] ::= [63] AttributeDeclaration
"element" "(" (ElementNameOrWildcard[65] (","
TypeName[70] "?"?)?)? ")"

 ::= [64] ElementTest

ElementName[69] | "*" ::= [65] ElementNameOrWildcard
"schema-element" "(" ElementDeclaration[67] ")" ::= [66] SchemaElementTest
ElementName[69] ::= [67] ElementDeclaration

QName[78] ::= [68] AttributeName
QName[78] ::= [69] ElementName

QName[78] ::= [70] TypeName

Literals (3.1.1)
Digits[81] ::= [71] IntegerLiteral
("." Digits[81]) | (Digits[81] "." [0-9]*) ::= [72] DecimalLiteral

(("." Digits[81]) | (Digits[81] ("." [0-9]*)?)) [eE]
[+-]? Digits[81]

 ::= [73] DoubleLiteral

('"' (EscapeQuot[75] | [^"])* '"') | ("'"
(EscapeApos[76] | [^'])* "'")

 ::= [74] StringLiteral

'""' ::= [75] EscapeQuot
"''" ::= [76] EscapeApos

Comments (2.6)
"(:" (CommentContents[82] | Comment[77])* ":)" ::= [77] Comment

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 152 of 179

Practical Transformation Using XSLT and XPath

Terminal Symbols (1.2.1)
[http://www.w3.org/TR/REC-xml-names/#NT-QName][XML-
Names-7]

 ::= [78] QName

[http://www.w3.org/TR/REC-xml-names/#NT-NCName][XML-
Names-4]

 ::= [79] NCName

[http://www.w3.org/TR/REC-xml#NT-Char][XML-
2]

 ::= [80] Char

Literals (3.1.1)
[0-9]+ ::= [81] Digits

Comments (2.6)
(Char[80]+ - (Char* ('(:' | ':)') Char*)) ::= [82] CommentContents

Page 153 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
XSLT 2.0 grammar productions
Annex C - Instruction, function and grammar summaries
Section 2 - Vocabulary, functions and grammars XSLT 2.0 and XPath 2.0

PathPattern[2]
| Pattern[1] '|' PathPattern[2]

 ::= [1] Pattern

RelativePathPattern[3]
| '/' RelativePathPattern[3]?
| '//' RelativePathPattern[3]
| IdKeyPattern[6] (('/' | '//') RelativePathPattern[3])?

 ::= [2] PathPattern

PatternStep[4] (('/' | '//')
RelativePathPattern[3])?

 ::= [3] RelativePathPattern

PatternAxis[5]? NodeTest[XPath-35] PredicateList[XPath-
39]

 ::= [4] PatternStep

('child' '::' | 'attribute' '::' | '@') ::= [5] PatternAxis
'id' '(' IdValue[7] ')'
| 'key' '(' StringLiteral[XPath-74] ',' KeyValue[8] ')'

 ::= [6] IdKeyPattern

StringLiteral[XPath-74] | VarRef[XPath-44] ::= [7] IdValue
Literal[XPath-42] | VarRef[XPath-44] ::= [8] KeyValue

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 154 of 179

Practical Transformation Using XSLT and XPath

Annex D - Tool questions

- Introduction - Sample questions for vendors
- Section 1 - XSLStyle™

Page 155 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Sample questions for vendors
Annex D - Tool questions

Answers to the following questions may prove useful when trying to better understand a
product offering from a vendor. The specific questions are grouped under topical questions.
This by no means makes up a complete list of questions as you may have your own criteria
to add, nonetheless, they do cover aspects of XSLT and XQuery that may impact on the
stylesheets and transformation specifications you write.

- how is the product identified?
- what is the name of the processor in product literature?
- what value is returned by the system properties?

- recall The transformation environment (page 83)
- what version of specification is supported?

- returned by the xsl:version system property in XSLT
- to which email address or URL are questions forwarded for more information in

general?
- to which email address or URL are questions forwarded for more information

specific to the answers to these technical questions?
- what output serialization methods are supported for the result node tree?

- XML?
- HTML?
- text?
- XHTML?
- XSL formatting and flow objects?

- in what ways are the formatting objects interpreted (direct to screen? HTML?
PostScript? PDF? TeX? etc.)?

- other non-XML text-oriented methods different than the standard text method (e.g.
NXML by XT)?

- what are the semantics and vocabulary for each such environment?
- other custom serialization methods?

- what are the semantics and vocabulary for each such environment?
- what customization is available to implement one's own interpretation of result

tree semantics?
- is there access to the result tree as either a DOM tree or SAX events?
- does such access still oblige serialization to an external file?

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 156 of 179

Practical Transformation Using XSLT and XPath

Sample questions for vendors (cont.)
Annex D - Tool questions

- how does the processor differ from the W3C working drafts or recommendations?
- upon which dated W3C documents describing the specifications is the software

based?
- which constructs or functions are not implemented at all?
- which constructs or functions are implemented differently than in the W3C

description?
- what namespace URI values are used for those available constructs or functions

described differently or not described in W3C version?
- is the W3C recommended stylesheet association technique implemented for the

direct processing XML instances?
- if so, can it be selectively engaged and disengaged?

- are any extension functions or extension elements implemented?
- what is the recognized extension namespace and the utility of the extension

functions and elements implemented?
- is there an extension function for the conversion of a result tree fragment to

a node-set?
- are there any built-in extension functions or extension elements for the

writing of templates to an output URL?
- can additional extension functions or extension elements (beyond those supplied

by the vendor) be added by the user?
- how so?

- are any extensions defined by exslt.org supported?

Page 157 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Sample questions for vendors (cont.)
Annex D - Tool questions

- how are particular facilities implemented?
- what is the implementation in the processor of indent="yes" for <xsl:output>?
- is a method provided for defining top-level <xsl:param> constructs at invocation

time?
- how is the <xsl:message> construct implemented?
- which UCS/Unicode format tokens are supported for <xsl:number>?
- which lang= values are supported for <xsl:sort>?
- what is the URI syntax for data projection for input?
- which collations are supported for string comparison?
- is the processor schema-aware?
- what are the details of the collection URI syntax?

- how are errors reported or gracefully handled?
- regarding template conflict resolution?
- regarding improper content of result tree nodes (e.g. comments, processing

instructions)?
- regarding invocation of unimplemented functions or features?
- regarding any other areas?
- can fatal error reporting (e.g. template conflict resolution or other errors) be

selectively turned on to diagnose stylesheets targeted for use with other XSLT
processors that fail on an error?

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 158 of 179

Practical Transformation Using XSLT and XPath

Sample questions for vendors (cont.)
Annex D - Tool questions

- what are the details of the implementation and invocation of the processor?
- how are user values passed in to the transformation?
- which hardware/operating system platforms support the processor?
- which character sets are supported for the input file encoding and output

serialization?
- what is the XML processor used within the XSLT processor?

- does the XML processor support minimally declared internal declaration
subsets with only attribute list declarations of ID-typed attributes?

- does the XML processor support XML Inclusions (Xinclude)?
- does the XML processor support catalogues for public identifiers?
- does the XML processor validate the source file?

- can this be turned on and off?
- can the processor be embedded in other applications?

- can the processor be configured as a servlet in a web server?
- is there access to the result tree as either a DOM tree or SAX events?

- is the source code of the processor available?
- in what language is the processor written?

- for Windows-based environments:
- can the processor be invoked from the MSDOS command-line box?
- can the processor be invoked from a GUI interface?
- what other methods of invocation can be triggered (DLL, RPC, etc.)?
- can error messages be explicitly redirected to a file using an invocation

parameter (since, for example, Windows-95 does not allow for redirection
of the standard error port to a file)?

- does the processor take advantage of parallelism when executing the stylesheet,
or is the stylesheet always processed serially?

- does the processor implement tail recursion for called named templates?
- does the processor implement lazy evaluation for XPath location path expression

evaluation?

Page 159 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
XSLStyle™
Annex D - Tool questions
Section 1 - XSLStyle™

An XSLT stylesheet embedded documentation methodology
- an XSLT stylesheet is an XML document
- one can embed a documentation vocabulary in an XSLT stylesheet through standard

XML namespace techniques
- a stylesheet for stylesheets renders the embedded documentation to HTML and CSS
- freely downloadable environment from the Crane Softwrights Ltd. web site as a developer

resource

Can invoke as a separate stylesheet or through embedded association
- see http://www.w3.org/TR/xml-stylesheet/
- recall Stylesheet association (page 34)

Embedded documentation uses a Crane namespace for structure
- DocBook for content

- see http://www.docbook.org/ for details
- DITA for content

- see http://dita.xml.org/ for details
- XHTML for content

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 160 of 179

Practical Transformation Using XSLT and XPath

XSLStyle™ (cont.)
Annex D - Tool questions
Section 1 - XSLStyle™

Enforces "stylesheet writing rules" on the writer of the stylesheet
- adds rigor to the stylesheet
- e.g. all top-level constructs must be separately documented
- e.g. all parameters of all templates and functions must be separately documented
- e.g. all parameters of all templates and functions must have declared types
- e.g. all named top-level constructs must be namespace qualified
- many other rules

Resulting HTML report is similar to an enhanced Javadoc report
- encompasses the complete import tree
- alphabetized index of all named top-level constructs
- deficiencies report

- fully hyperlinked content
- one could institute a development rule of not allowing the check-in of a stylesheet

until the library is fully documented according to the writing rules

Page 161 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
XSLStyle™ (cont.)
Annex D - Tool questions
Section 1 - XSLStyle™

An example fragment:
01 <?xml-stylesheet type="text/xsl" href="xslstyle-docbook.xsl"?>
02 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
03 xmlns:xs="http://www.CraneSoftwrights.com/ns/xslstyle"
04 xmlns:i="internal-namespace"
05 exclude-result-prefixes="xs i"
06 version="1.0">
07

08 <!--an example import-->
09 <xsl:import href="docbookex1.xsl"/>
10 <!--another example import-->
11 <xsl:import href="docbookex2.xsl"/>
12

13 <xs:doc info="$Id: ex.xsl,v 1.1 2007/09/16 23:32:01 G. Ken Holman Exp
$"
14 filename="ex.xsl" global-ns="xs" internal-ns="i" vocabulary="DocBook">
15 <xs:title>XSLStyle™ illustration for the DocBook
vocabulary</xs:title>
16 <para>
17 XSLStyle™ implements a methodology for styling stylesheets
18 using a documentation vocabulary into formatted documentation and
19 rigourous completeness reports.
20 </para>
21 <programlisting>
22 Copyright (C) - Crane Softwrights Ltd.
23 ...
24 <xs:template>
25 <para>The formatting of a single entry in the import tree.</para>
26 <xs:param name="href">
27 <para>The URI used to access the module for this entry.</para>
28 </xs:param>
29 </xs:template>
30 <xsl:template name="i:format-tree-entry">
31 <xsl:param name="href"/>
32 <listitem>
33 ...

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 162 of 179

Practical Transformation Using XSLT and XPath

XSLStyle™ (cont.)
Annex D - Tool questions
Section 1 - XSLStyle™

Page 163 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Where to go from here?
Conclusion - Practical Transformation Using XSLT and XPath

The work on XSL, XQuery, XSLT and XPath continues:
- all are full W3C Recommendations undergoing designs for new features
- long list of future feature considerations already being examined for new releases of the

technology
- new products are continually being announced
- feedback is necessary from users like you!

- use the XSL mail lists to contribute:
- http://www.mulberrytech.com/xsl/xsl-list/
- http://groups.yahoo.com/group/XSL-FO
- http://lists.w3.org/Archives/Public/www-xsl-fo/

- contact the W3C with comments about the XSLT/XPath/XQuery specifications:
- http://www.w3.org/XML/2005/04/qt-bugzilla
- mailto:public-qt-comments@w3.org

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 164 of 179

Practical Transformation Using XSLT and XPath

Colophon
Conclusion - Practical Transformation Using XSLT and XPath

These materials were produced using structured information technologies as follows:
- authored source materials

- content in numerous XML files maintained as external general entities for a
complete prose book that can be made into a subset for training

- specification of applicability of constructs for each configuration
- 45- and 90-minute lecture, half-, full-, two- and three-day lecture and

hands-on instruction, and book (prose) configurations
- an XSLT transformation creates the subset of effective constructs from

applying applicability to the complete file
- content from other presentations/tutorials included semantically (not

syntactically) during construct assembly
- customized appearance engaged with marked sections and both parameter and

general entities
- different host company logos and venue and date marginalia
- changing a single external parameter entity to a key file includes suite of files

for given appearance
- accessible rendition in HTML

- an XSLT stylesheet produces a collection of HTML files using Saxon for multiple
file output

- mono-spaced fonts and list-depth notation conventions assist the comprehension
of the material when using screen-reader software

- printed handout deliverables
- an XSLT stylesheet produces an instance of XSL formatting objects (XSL-FO)

for rendering
- XPDF http://www.foolabs.com/xpdf extracts raw text from PDF files for the

back-of-the-book index methodology published as a free resource by Crane
Softwrights Ltd.

- XEP by RenderX http://www.renderx.com produces PostScript from XSL-FO
- GhostScript http://www.GhostScript.com produces PDF from PostScript
- the iText http://itext.sf.net PDF manipulation library for Java is used for

page imposition by a custom Python http://www.python.org program running
under the Jython http://www.jython.org environment

Page 165 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Obtaining a copy of the comprehensive tutorial
Conclusion - Practical Transformation Using XSLT and XPath

This comprehensive tutorial on XSLT and XPath is available for subscription purchase and
free preview download:

- "Practical Transformation Using XSLT and XPath (XSL Transformations and the XML
Path Language)" Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

- the free download preview excerpt of the publication indicates the number of pages
for each topic

- the cost of purchase includes all future updates to the materials with email notification
- the materials are updated after new releases of the W3C specifications
- the materials are updated after incorporating comments gleaned during presentations

and from feedback from customers
- available in PDF

- formatted as 1-up or 2-up book pages per imaged page
- dimensions in either US-letter or A4 page sizes
- available as either single sided or double sided

- accessible rendition available for use with screen readers
- free preview download includes full text of first two chapters and two useful annexes
- site-wide and world-wide staff licenses (one-time fee) are available

See http://www.CraneSoftwrights.com/links/trn-20110211.htm for more details.

Feedback
- the unorthodox style has been well-accepted by customers as an efficient learning

presentation
- feedback from customers is important to improve or repair the content for future editions
- please send suggestions or comments (positive or negative) to
info@CraneSoftwrights.com

US Government employee purchase
- US Government employees (not contractors) are entitled to obtain their personal prepaid

copies at no charge from a government intranet location
- visit the Crane web site for details

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 166 of 179

Practical Transformation Using XSLT and XPath

Practical Transformation
Using XSLT and XPath

(XSL Transformations and
the XML Path Language)

Crane Softwrights Ltd.
http://www.CraneSoftwrights.com

Page 167 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Practical Transformation Using XSLT and XPath
Table of contents
Indexed by slide number

001 [Prelude] Practical Transformation Using XSLT and XPath (Prelude) (002)

003 Practical Transformation Using XSLT and XPath
004 [Introduction -1-1] Transforming structured information (005)

006 [1] The context of XSLT and XPath
007 [Introduction 1-1-1] Overview
008 [1-1-1-1] Extensible Markup Language (XML) (009) (010) (011) (012) (013) (014) (015)

016 [1-1-2-1] XML information links
017 [1-1-3-1] XML Path Language (XPath) (018)

019 [1-1-4-1] Styling structured information
020 [1-1-5-1] Extensible Stylesheet Language (XSL/XSL-FO)
021 [1-1-6-1] Extensible Stylesheet Language Transformations (XSLT) (022) (023)

024 [1-1-7-1] XSLT properties (025) (026)

027 [1-1-8-1] Historical development of the XSL and XQuery Recommendations
028 [1-1-9-1] XSL information links
029 [1-1-10-1] Namespaces (030) (031) (032) (033)

034 [1-1-11-1] Stylesheet association
035 [1-2-1-1] Transformation from XML to XML
036 [1-2-2-1] Transformation from XML to non-XML (037) (038)

039 [1-2-3-1] Transforming and rendering XML information using XSLT and XSL-FO
040 [1-2-4-1] XML to binary or other formats (041)

042 [1-2-5-1] XSLT as an application front-end
043 [1-2-6-1] Three-tiered architectures (044)

045 [1-2-7-1] XSLT and XQuery on the wire
046 [2] Getting started with XSLT and XPath
047 [Introduction 2-1-1] Getting started
048 [2-1-1-1] Some simple examples (049) (050) (051) (052)

053 [2-2-1-1] XSLT stylesheet requirements
054 [2-2-2-1] XSLT instructions and literal result elements
055 [2-2-3-1] XSLT templates and template rules
056 [2-2-4-1] XSLT stylesheet components
057 [2-3-1-1] Pull and push constructs (058) (059) (060) (061)

062 [2-4-1-1] Processing XML with many transforms (063) (064) (065) (066) (067) (068) (069)

070 [3] XPath data model
071 [Introduction 3-1-1] The need for abstractions (072)

073 [Introduction 3-2-1] Data types
074 [Introduction 3-3-1] Sequence types
075 [Introduction 3-4-1] Constructing result trees
076 [Introduction 3-5-1] XPath data model
077 [4] Processing model
078 [Introduction 4-1-1] A predictable behavior for processors (079) (080)

081 [5] Transformation environment
082 [Introduction 5-1-1] The transformation environment (083)

084 [6] Transform and data management
085 [Introduction 6-1-1] Why modularize logical and physical structures? (086) (087) (088) (089)

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 168 of 179

Practical Transformation Using XSLT and XPath

090 [7] Data type expressions and functions
091 [Introduction 7-1-1] Data type expressions and functions (092) (093) (094) (095) (096) (097) (098)

(099) (100)

101 [8] Constructing the result tree
102 [Introduction 8-1-1] Constructing result-tree nodes (103)

104 [9] Sorting and grouping
105 [Introduction 9-1-1] Sorting and grouping (106) (107)

108 [A] XML to HTML transformation
109 [Introduction A-1-1] Historical web standards for presentation
110 [B] XSL formatting semantics introduction
111 [Introduction B-1-1] Formatting objectives (112)

113 [C] Instruction, function and grammar summaries
114 [Introduction C-1-1] Quick summaries
115 [C-1-1-1] XSLT 1.0 element summary
116 [C-1-2-1] XPath 1.0 and XSLT 1.0 function summary
117 [C-1-3-1] XPath 1.0 grammar productions
118 [C-1-4-1] XSLT 1.0 grammar productions
119 [C-2-1-1] XSLT 2.0 element summary
120 [C-2-2-1] XPath 2.0 and XSLT 2.0 function summary
121 [C-2-3-1] XPath 2.0 grammar productions
122 [C-2-4-1] XSLT 2.0 grammar productions
123 [D] Tool questions
124 [Introduction D-1-1] Sample questions for vendors (125) (126) (127)

128 [D-1-1-1] XSLStyle™ (129) (130) (131)

132 [Conclusion -1-1] Where to go from here?
133 [Conclusion -2-1] Colophon
134 [Conclusion -3-1] Obtaining a copy of the comprehensive tutorial
135 [Postlude] Practical Transformation Using XSLT and XPath (Postlude)

Page 169 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
Practical Transformation Using XSLT and XPath
Index

A
abs() function94

in chapter summary 94
referenced 137

adjust-date-to-timezone() function97
in chapter summary 97
referenced 137

adjust-dateTime-to-timezone() function
97

in chapter summary 97
referenced 137

adjust-time-to-timezone() function97
in chapter summary 97
referenced 137

aggregation 45
<xsl:analyze-string> instruction93

referenced 93, 127
ancestor:: axis 72
ancestor-or-self:: axis 72
anyURI data type 73
application front-end 42
<xsl:apply-imports> instruction88

in chapter summary 88
in instruction summary 115
referenced 127

<xsl:apply-templates> instruction80
in chapter summary 80
in instruction summary 115
referenced 127

<xsl:attribute> instruction103
in chapter summary 103
in instruction summary 115
referenced 127

<xsl:attribute-set> instruction103
in chapter summary 103
in instruction summary 115
referenced 128

aural media 20, 39
avg() function96

in chapter summary 96
referenced 137

axis 72
diagram 72

B
base-uri() function99

in chapter summary 99
referenced 137

base64Binary data type 73
binary serialization 40-41, 78
boolean data type 73
boolean() function94

in chapter summary 94
in function summary 120
referenced 137

byte data type 73

C
<xsl:call-template> instruction88

in chapter summary 88, 93
in instruction summary 115
referenced 128

Cascading Stylesheets (CSS) 19-20, 111
cast as 92
castable as 92
ceiling() function94

in chapter summary 94
in function summary 120
referenced 137

character set 49
<xsl:character-map> instruction83

referenced 83, 128
child:: axis 72
<xsl:choose> instruction80

in chapter summary 80
in instruction summary 115
referenced 128

codepoint-equal() function94
in chapter summary 94
referenced 137

codepoints-to-string() function94
in chapter summary 94
referenced 137

collection() function89
in chapter summary 89
referenced 138

colophon 165

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 170 of 179

Practical Transformation Using XSLT and XPath

<xsl:comment> instruction103
in chapter summary 103
in instruction summary 115
referenced 128

compare() function94
in chapter summary 94
referenced 138

concat() function94
in chapter summary 94
in function summary 120
referenced 138

contains() function94
in chapter summary 94
in function summary 120
referenced 138

<xsl:copy> instruction103
in chapter summary 103
in instruction summary 116
referenced 128

<xsl:copy-of> instruction103
in chapter summary 80, 103
in instruction summary 116
referenced 129

count() function96
in chapter summary 96
in function summary 120
referenced 138

current() function100
in chapter summary 100
in function summary 120
referenced 138

current-date() function97
in chapter summary 97
referenced 138

current-dateTime() function97
in chapter summary 97
referenced 138

current-group() function107
in chapter summary 107
referenced 138

current-grouping-key() function107
in chapter summary 107
referenced 138

current-time() function97
in chapter summary 97
referenced 138

D
data() function99

in chapter summary 99
referenced 138

data model of XML documents10-11, 17, 21,
71-76

data types 14, 73
date data type 73
dateTime data type 73
dateTime() function97

in chapter summary 97
referenced 139

day-from-date() function97
in chapter summary 97
referenced 139

day-from-dateTime() function97
in chapter summary 97
referenced 139

days-from-duration() function97
in chapter summary 97
referenced 139

debugging 25
decimal data type 73
<xsl:decimal-format> instruction93

in instruction summary 116
referenced 93, 129

declarative approach 24
deep-equal() function96

in chapter summary 96
referenced 139

default attributes 14
default-collation() function95

in chapter summary 95
referenced 139

descendant:: axis 72
descendant-or-self:: axis 72
device independence 20
distinct-values() function96

in chapter summary 96
referenced 139

doc() function89
in chapter summary 89
referenced 139

doc-available() function89
in chapter summary 89
referenced 139

Page 171 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
document() function89

in chapter summary 89
in function summary 120
referenced 139

<xsl:document> instruction103
in chapter summary 103
referenced 129

document model 10-11, 25, 29
Document Object Model (DOM) 15, 22, 26,

71
document order 26
Document Style Semantics and Specification

Language (DSSSL) 20, 111
Document Type Definition (DTD)11, 14, 17,

25
document-uri() function99

in chapter summary 99
referenced 139

double data type 73
duration data type 73

E
<xsl:element> instruction103

in chapter summary 103
in instruction summary 116
referenced 129

element-available() function89
in chapter summary 89
in function summary 120
referenced 139

empty() function96
in chapter summary 96
referenced 140

empty-sequence () 74, 76
encode-for-uri() function100

in chapter summary 100
referenced 140

ends-with() function95
in chapter summary 95
referenced 140

entities
external parsed general entities 9
external unparsed general entities 9

ENTITIES data type 73
ENTITY data type 73
eq 92

error() function82
in chapter summary 82
referenced 140

escape-html-uri() function100
in chapter summary 100
referenced 140

every...in..satisfies 92
exactly-one() function96

in chapter summary 96
referenced 140

except 92
exists() function96

in chapter summary 96
referenced 140

expanded name 30
extensible design 26
Extensible Hypertext Markup Language

(XHTML) 25, 78
Extensible Markup Language (XML)7, 8-15,

24-25, 78
Extensible Stylesheet Language Formatting

Objects (XSL-FO) 7, 19, 20, 32, 39,
111-112

Extensible Stylesheet Language Transforma-
tions (XSLT) 7, 19, 21-23, 32, 34

extensions 32

F
<xsl:fallback> instruction88

in chapter summary 88
in instruction summary 116
referenced 129

false() function94
in chapter summary 94
in function summary 120
referenced 140

float data type 73
floor() function94

in chapter summary 94
in function summary 120
referenced 140

flow semantics 20
following:: axis 72
following-sibling:: axis 72
for 76

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 172 of 179

Practical Transformation Using XSLT and XPath

<xsl:for-each> instruction80
in chapter summary 80
in instruction summary 116
referenced 130

<xsl:for-each-group> instruction107
in chapter summary 107
referenced 130

format-date() function97
in chapter summary 97
referenced 140

format-dateTime() function97
in chapter summary 97
referenced 140

format-number() function95
in chapter summary 95
in function summary 120
referenced 141

format-time() function97
in chapter summary 97
referenced 141

formatting 19
formatting semantics 20

<xsl:function> instruction88
in chapter summary 88
referenced 130

function-available() function89
in chapter summary 89
in function summary 121
referenced 141

functions 26, 91-100
user-defined 26, 33

G
gDay data type 73
ge 92
general purpose XML transformations 24
generate-id() function99

in chapter summary 99
in function summary 121
referenced 141

gMonth data type 73
gMonthDay data type 73
grouping of information 106
gt 92
gYear data type 73
gYearMonth data type 73

H
hexBinary data type 73

hierarchies in an XML document
logical 10, 17, 48
physical 9, 17

history 27
hours-from-dateTime() function97

in chapter summary 97
referenced 141

hours-from-duration() function97
in chapter summary 97
referenced 141

hours-from-time() function97
in chapter summary 97
referenced 141

Hypertext Markup Language (HTML)24-25,
44, 49, 78, 109, see also Extensible
Hypertext Markup Language (XHTML)

serialization 36

I
ID data type 73
id() function100

in chapter summary 100
in function summary 121
referenced 141

ID/IDREF 14
IDREF data type 73
idref() function100

in chapter summary 100
referenced 141

IDREFS data type 73
if 76
<xsl:if> instruction80

in chapter summary 80
in instruction summary 116
referenced 130

imperative approach 24
implicit-timezone() function97

in chapter summary 97
referenced 141

<xsl:import> instruction88
in chapter summary 88
in instruction summary 116
referenced 130

<xsl:import-schema> instruction83
referenced 83, 130

in-scope-prefixes() function99
in chapter summary 99
referenced 141

Page 173 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
<xsl:include> instruction88

in chapter summary 88
in instruction summary 117
referenced 131

index-of() function96
in chapter summary 96
referenced 142

insert-before() function96
in chapter summary 96
referenced 142

instance of 92
instructions 26, 54
int data type 73
integer data type 73
Internet Explorer (IE) 47, 52
intersect 92
invocation 55
iri-to-uri() function100

in chapter summary 100
referenced 142

is 92
item() 74

K
key() function100

in chapter summary 100
in function summary 121
referenced 142

<xsl:key> instruction93
in chapter summary 93
in instruction summary 117
referenced 131

Kleene operator 74

L
lang() function94

in chapter summary 94
in function summary 121
referenced 142

language data type 73
last() function76

in chapter summary 76
in function summary 121
referenced 142

le 92
legend 35
links to resources

XML 16
XSL 28

literal result element 54
local name 30
local-name() function99

in chapter summary 99
in function summary 121
referenced 142

local-name-from-QName() function99
in chapter summary 99
referenced 142

logical document hierarchy 10, 17
long data type 73
lower-case() function95

in chapter summary 95
referenced 142

lt 92

M
mail lists 164
markup 71

syntax preservation 24
matches() function95

in chapter summary 95
referenced 142

<xsl:matching-substring> instruction93
referenced 93, 131

Mathematical Markup Language (MathML)
29

max() function96
in chapter summary 96
referenced 142

<xsl:message> instruction83
in instruction summary 117
referenced 83, 131

min() function96
in chapter summary 96
referenced 143

minutes-from-dateTime() function98
in chapter summary 98
referenced 143

minutes-from-duration() function98
in chapter summary 98
referenced 143

minutes-from-time() function98
in chapter summary 98
referenced 143

modularization 22

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 174 of 179

Practical Transformation Using XSLT and XPath

month-from-date() function98
in chapter summary 98
referenced 143

month-from-dateTime() function98
in chapter summary 98
referenced 143

months-from-duration() function98
in chapter summary 98
referenced 143

Multimedia Internet Mail Extension 34

N
Name data type 73
name() function99

in chapter summary 99
in function summary 121
referenced 143

<xsl:namespace> instruction103
in chapter summary 103
referenced 131

<xsl:namespace-alias> instruction83
in instruction summary 117
referenced 83, 131

namespace-uri() function99
in chapter summary 99
in function summary 121
referenced 143

namespace-uri-for-prefix() function99
in chapter summary 99
referenced 143

namespace-uri-from-QName() function99
in chapter summary 99
referenced 143

namespaces 7, 29-33, 53
NCName data type 73
ne 92
negativeInteger data type 73
network applications 45
<xsl:next-match> instruction88

in chapter summary 88
referenced 131

nilled() function99
in chapter summary 99
referenced 143

NMTOKEN data type 73
NMTOKENS data type 73

node 54
node tree 50, 71
node tree diagram 72
root node 55

node() node test 74
node-name() function99

in chapter summary 99
referenced 144

<xsl:non-matching-substring> instruc-
tion 93

referenced 93, 132
Non-XML serialization 40
nonNegativeInteger data type 73
nonPositiveInteger data type 73
normalize-space() function95

in chapter summary 95
in function summary 121
referenced 144

normalize-unicode() function95
in chapter summary 95
referenced 144

normalizedString data type 73
not() function94

in chapter summary 94
in function summary 121
referenced 144

NOTATION data type 73
number() function94

in chapter summary 94
in function summary 121
referenced 144

<xsl:number> instruction103
in chapter summary 103
in instruction summary 117
referenced 132

O
one-or-more() function96

in chapter summary 96
referenced 144

<xsl:otherwise> instruction80
in chapter summary 80
in instruction summary 117
referenced 132

<xsl:output> instruction83
in instruction summary 117
referenced 83, 132

Page 175 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
<xsl:output-character> instruction83

referenced 83, 133

P
pagination

semantics 20
parallelism 26
<xsl:param> instruction88

in chapter summary 88
in instruction summary 118
referenced 83, 133

parent:: axis 72
<xsl:perform-sort> instruction107

in chapter summary 107
referenced 133

physical document hierarchy 9, 17
polymorphism 22
position() function76

in chapter summary 76
in function summary 121
referenced 144

positiveInteger data type 73
preceding:: axis 72
preceding-sibling:: axis 72
prefix (namespace) 30
prefix-from-QName() function99

in chapter summary 99
referenced 144

<xsl:preserve-space> instruction76
in chapter summary 76
in instruction summary 118
referenced 133

processing model 21, 78-80
<xsl:processing-instruction> instruc-

tion 103
in chapter summary 103
in instruction summary 118
referenced 133

projection 21, 87
publishing 21
publish/subscribe 45
pull 58
purchasing 166
push 60

Q
QName data type 73

QName() function99
in chapter summary 99
referenced 144

qualified name 30
query language 18

R
recommendations 27
regex-group() function100

in chapter summary 100
referenced 144

remove() function96
in chapter summary 96
referenced 144

replace() function95
in chapter summary 95
referenced 144

repositioning 58, 60
resolve-QName() function99

in chapter summary 99
referenced 145

resolve-uri() function100
in chapter summary 100
referenced 145

Resource Description Framework (RDF) 30
resource discovery 29
result tree 24, 26, 38-39, 51, 55, 71, 75, 102
<xsl:result-document> instruction83

referenced 83, 134
reverse() function96

in chapter summary 96
referenced 145

root() function99
in chapter summary 99
referenced 145

round() function94
in chapter summary 94
in function summary 122
referenced 145

round-half-to-even() function94
in chapter summary 94
referenced 145

S
Saxon XSLT processor 21, 32, 47, 49, 51
Scalable Vector Graphics (SVG) 29
schema-aware processing 14, 73

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 176 of 179

Practical Transformation Using XSLT and XPath

seconds-from-dateTime() function98
in chapter summary 98
referenced 145

seconds-from-duration() function98
in chapter summary 98
referenced 145

seconds-from-time() function98
in chapter summary 98
referenced 145

self:: axis 72
<xsl:sequence> instruction88

in chapter summary 88
referenced 134

sequence type 74
serialization of result tree 21, 24, 26, 36, 39,

40-41, 51, 75, 78
short data type 73
Simple API for XML (SAX) 15, 26
simplified stylesheet 56
some...in..satisfies 92
<xsl:sort> instruction107

in chapter summary 107
in instruction summary 118
referenced 134

sorting 26, 105
source file/tree (input) 25-26, 71, 78
Standard Generalized Markup Language

(SGML) 8, 25
starts-with() function95

in chapter summary 95
in function summary 122
referenced 145

static-base-uri() function99
in chapter summary 99
referenced 145

string data type 73
string() function95

in chapter summary 95
in function summary 122
referenced 146

string-join() function95
in chapter summary 95
referenced 146

string-length() function95
in chapter summary 95
in function summary 122
referenced 146

string-to-codepoints() function95
in chapter summary 95
referenced 146

<xsl:strip-space> instruction76
in chapter summary 76
in instruction summary 118
referenced 134

stylesheet 21, 25, 53
association 7, 34
modularization 85-89

stylesheet file/tree (input) 78
<xsl:stylesheet> instruction83

in instruction summary 118
referenced 83, 135

styling structured information 19
subscribe/publish 45
subsequence() function96

in chapter summary 96
referenced 146

substring() function95
in chapter summary 95
in function summary 122
referenced 146

substring-after() function95
in chapter summary 95
in function summary 122
referenced 146

substring-before() function95
in chapter summary 95
in function summary 122
referenced 146

sum() function96
in chapter summary 96
in function summary 122
referenced 146

system-property() function83
in chapter summary 83
in function summary 122
referenced 146, 156

T
template 22-23, 55, 75

named 55
rule 55
start 26, 78

Page 177 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

PREVIEW EXCERPT
<xsl:template> instruction80

in chapter summary 80, 88
in instruction summary 118
referenced 135

text
serialization 36, 78
text input 25-26

<xsl:text> instruction103
in chapter summary 103
in instruction summary 118
referenced 135

time data type 73
timezone-from-date() function98

in chapter summary 98
referenced 146

timezone-from-dateTime() function98
in chapter summary 98
referenced 147

timezone-from-time() function98
in chapter summary 98
referenced 147

to 92
token data type 73
tokenize() function95

in chapter summary 95
referenced 147

top-level elements 33
trace() function82

in chapter summary 82
referenced 147

transform 21
<xsl:transform> instruction83

in instruction summary 119
referenced 83, 135

transforming information 19, 45
translate() function95

in chapter summary 95
in function summary 122
referenced 147

treat as 92
true() function94

in chapter summary 94
in function summary 122
referenced 147

Turing complete 22
type-available() function83

in chapter summary 83
referenced 147

typographical conventions 2

U
union 92
uniqueness 106
Universal Resource Identifier 30
unordered() function96

in chapter summary 96
referenced 147

unparsed-entity-public-id() function
89

in chapter summary 89
referenced 147

unparsed-entity-uri() function89
in chapter summary 89
in function summary 122
referenced 147

unparsed-text() function89
in chapter summary 89
referenced 147

unparsed-text-available() function89
in chapter summary 89
referenced 147

unsignedByte data type 73
unsignedInt data type 73
unsignedLong data type 73
unsignedShort data type 73
untypedAtomic data type 73
upper-case() function95

in chapter summary 95
referenced 148

V
validation 25
value constructor 73
<xsl:value-of> instruction80

in chapter summary 80
in instruction summary 119
referenced 54, 136

<xsl:variable> instruction88
in chapter summary 88
in instruction summary 119
referenced 136

vendor questions 156-159
version= attribute

in <xsl:stylesheet> 53
in <xsl:transform> 53

version of XSLT 53
visual media 20

Copyright © Crane Softwrights Ltd.
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Page 178 of 179

Practical Transformation Using XSLT and XPath

vocabulary, XML 8, 21, 25, 29, 32

W
W3C Schema 14, 25, 73
W3C XSL Working Group 19
web server 43-44
well-formed XML 8, 25
<xsl:when> instruction80

in chapter summary 80
in instruction summary 119
referenced 136

white-space characters 14
Wireless Markup Language (WML) 69
<xsl:with-param> instruction88

in chapter summary 88
in instruction summary 119
referenced 136

WSSSL 19

X
XHTML, see Extensible Hypertext Markup

Language (XHTML)
serialization 37

XML declaration 48
XML Information Set 14, 18
XML Path Language (XPath) 7, 71-76

XML Pointer Language (XPointer) 17
XML processor 15, 24-25
XML Query Language (XQuery) 17, 36
xml:space 15
XSL-FO processor 20
XSLStyleTM 160-163
XSLT processor 14, 22, 24-26
XT XSLT processor 32

Y
year-from-date() function98

in chapter summary 98
referenced 148

year-from-dateTime() function98
in chapter summary 98
referenced 148

yearMonthDuration data type 73
years-from-duration() function98

in chapter summary 98
referenced 148

Z
zero-or-one() function96

in chapter summary 96
referenced 148

Page 179 of 179
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

